Public-Key Anamorphism in (CCA-secure) Public-Key Encryption and Beyond

CRYPTO24 - August, 2024

Joint work by: G. Persiano (UNISA+Google) Duong Hieu Phan (Telecom Paris) Moti Yung (Google+Columbia)

Privacy as a Human Right

UDHR, Article 12: (1948)

No one shall be subjected to arbitrary interference with his privacy, family, home or **correspondence**,...

End to End Encryption

- Cryptography has been very successful in providing tools for encrypting communication
 - The Signal protocol and app

But its success relies on an assumption that might be challenged in dictatorial states

The receiver-privacy assumption

Encryption guarantees message confidentiality only with respect to parties that do not have access to the receiver's private key

The receiver-privacy assumption

The receiver keeps his secret key in a private location

Receiver privacy

- realistic for "normal" settings
- In a dictatorship, instead
 - No receiver privacy: citizens might be invited to surrender their private keys

https://xkcd.com/538/

Ban of E2E encryption

In our country, do we want to allow a means of communication between people which even in extremis, with a signed warrant from the Home Secretary personally, that we cannot read?

> David Cameron UK Prime Minister January 2015

The Anamorphic approach for receiver privacy [PPY EC22]

- An anamorphic public key aPK is associated with two secret keys
 - the innocent secret key ask
 - the double secret key dkey
- A ciphertext carries two plaintexts
 - the innocent message msg
 - the anamorphic message amsg
- ...and there is **no** second key
 - (aPK, ask) indistinghishable from regular pair (PK, sk)
- if the dictator asks for the secret key associated with aPK, just surrender the innocent secret key ask

Anamorphic Encryption Schemes: Syntax

• An anamorphic scheme AME consists of two encryption schemes:

the regular scheme (KG, Enc, Dec);

the anamorphic scheme (aKG, aEnc, aDec);

and it can be used to go around dictators that have access to the secret key

Bob deploys AME

Regular: use (KG, Enc, Dec) as a regular public-key encryption scheme

Anamorphic deployment of AME for Alice

- Bob runs (aPK, ask, dkey) ← aKG
- aPK is public, ask is given to D, and *double key* dkey is shared with Alice.
- Normal users use Enc and aPK to send messages to Bob.
- Alice wants to send anamorphic message amsg
 - Alice sets innocent message msg = "Glory to our Leader"

 - \mathcal{D} computes $\mathtt{msg} \leftarrow \mathsf{Dec}(\mathtt{act}, \mathtt{ask})$
 - Bob gets amsg \leftarrow aDec(act, dkey)

Note: Alice and Bob share dkey over a private channel

Anamorphic Encryption Schemes: Refined Syntax

The anamorphic scheme (aKG, aEnc, aDec) • $aKG(1^{\lambda})$ returns: public key aPK innocent secret key ask receiver double key rdkey sender double key sdkey \blacktriangleright dkey = rdkey + sdkey • aEnc(aPK, sdkey, msg, amsg) returns act • aDec(rdkey, act) returns amsg • Dec(ask, act) returns msg

Note: Bob sends sdkey to Alice on a private channel

Security notion

Real Game and Anamorphic Game are indistinguishable to ${\mathcal D}$

 $\mathsf{RealG}_{\mathsf{AME},\mathcal{D}}(\lambda)$

- Set (PK, sk) $\leftarrow \mathsf{KG}(1^{\lambda})$
- Return D^{EO(PK,.,.)}(PK, sk), where EO(PK, msg, amsg) = Enc(PK, msg).

AnamorphicG_{AME, \mathcal{D}}(λ)

- Set $((\texttt{aPK}, \texttt{ask}), (\texttt{sdkey}, \texttt{rdkey})) \leftarrow \texttt{aKG}(1^{\lambda})$
- Return D^{AO(aPK,sdkey,.,.)}(aPK, ask), where AO(PK, sdkey, msg, amsg) = aEnc(aPK, sdkey, msg, amsg).

The anamorphic scheme is not asymmetric anymore

• (KG, Enc, Dec) is asymmetric:

no secret information must be transferred from key generator to message sender

• (aKG, aEnc, aDec) is symmetric: key generator must transfer sdkey to message sender

The Naor-Yung Encryption Scheme

Let $\mathcal{E} = (KG, Enc, Dec)$ be any encryption scheme

Regular Mode

- Bob runs KG twice, randomly selects Σ and sets $PK = (PK_0, PK_1, \Sigma)$ and $sk = sk_0$
- Alice wants to send "Glory to our Leader" to Bob
 - Computes ct₀ = Enc(PK₀, "Glory to our Leader")
 - Computes ct₁ = Enc(PK₁, "Glory to our Leader")
 - ▶ Computes NIZK proof Π that ct_0 and ct_1 carry the same plaintext
 - Set $ct = (ct_0, ct_1, \Pi)$
- Bob wants to decrypt ct,
 - Checks I is a valid proof
 - If valid, decrypts ct₀ using sk

The Naor-Yung Encryption Scheme

Anamorphic Mode

- Bob runs KG twice, runs the simulator to get (Σ, aux) and sets $PK = (PK_0, PK_1, \Sigma)$ and $sk = sk_0$
- sets $rdkey = sk_1$ and sdkey = aux is shared with Alice
- Alice wants to send msg = "Glory to our Leader" to the dictator and amsg = "Fire our Leader" to Bob
 - Computes $ct_0 = Enc(PK_0, msg)$ and $ct_1 = Enc(PK_1, amsg)$
 - Simulate NIZK proof Π that ct_0 and ct_1 carry the same plaintext
 - Sets $ct = (ct_0, ct_1, \Pi)$
- To decrypt ct, Alice uses sk₁ to decrypt ct₁
- If asked to surrender her secret key, Alice gives sk_0
 - ► The dictator verifies Π, decrypts ct₀ and reads msg = "Glory to our Leader"

The Koppula-Waters Encryption Scheme CRYPTO '19

- Key Generation: kw.KG (1^{λ})
 - ▶ Generate 2λ pairs (PK_{bi}, sk_{bi}), $b \in \{0, 1\}, i \in \{1, ..., n\}$
 - Randomly select $a_1, \ldots, a_n \leftarrow \{0, 1\}^{\lambda}$ and $B \leftarrow \{0, 1\}^{\lambda}$
 - ► Set kw.PK = $(B, (a_i, PK_{0i}, PK_{1i})_{i=1}^{\lambda})$ and kw.sk = $(sk_{0i})_{i=1}^{\lambda}$ kw.sk = $(sk_{0i})_{i=1}^{\lambda}$
- Encryption: kw.Enc(kw.PK,msg)
 - ▶ randomly select $K \leftarrow \{0,1\}^{\lambda}$ and $(sigK, vK) \leftarrow Sign.KG(1^{\lambda})$
 - set $c = \mathcal{F}(K, 0) \oplus msg$
 - ► for $i = 1, ..., \lambda$ ★ $\tilde{r}_i = \mathcal{F}(K, i)$ $\tilde{r}_i = \mathcal{F}(K, i)$ and $v_i \leftarrow \{0, 1\}^{\lambda - 1}$ ★ if $K_i = 0$
 - $c_{0,i} = \mathsf{Enc}(\mathsf{PK}_{0i}, 1|v_i; \tilde{r}_i) \ c_{0,i} = \mathsf{Enc}(\mathsf{PK}_{0i}, 1|v_i; \tilde{r}_i), \ c_{1,i} = \mathsf{Enc}(\mathsf{PK}_{1i}, 0^{\lambda})$ $c_{1,i} = \mathsf{Enc}(\mathsf{PK}_{1i}, 0^{\lambda}) \ , \ c_{2,i} = G(v_i)$

★ if $K_i = 1$ $c_{0,i} = \text{Enc}(PK_{0i}, 0^{\lambda}) c_{0,i} = \text{Enc}(PK_{0i}, 0^{\lambda}), c_{1,i} = \text{Enc}(PK_{1i}, 1|v_i; \tilde{r}_i)$ $c_{1,i} = \text{Enc}(PK_{1i}, 1|v_i; \tilde{r}_i), c_{2,i} = G(v_i) + a_i + B \cdot vK$ ► sign $(c, (c_{0,i}, c_{1,i}, c_{2,i}))$ using sigK

Obs0: there are 2λ public keys Obs1: dictator has only λ secret keys sk_{0i}

Making KW19 Anamorphic

Anamorphic key generation

- keep all sk_{1i}
 - they constitute rdkey

Anamorphic Encryption

How to encrypt:

- msg = "Glory to our Leader"
- amsg = "Fire our Leader"
- Use kw.Enc to encrypt msg
- 2 Let *i* be such that $K_i = 0$

set $c_{1,i} = \mathsf{Enc}(\mathsf{PK}_{1i}, \mathtt{amsg})$

Note1: $\Theta(\lambda)$ messages can be sent with v.h.p.

Note2: No shared information !!!

Adding Anamorphism while preserving Asymmetry

CRYPTO24 - August, 2024

Anamorphic

Increasing bandwidth: Anamorphic KEM+DEM

• Encryption: kw.Enc(kw.PK, msg, amsg₁,..., amsg_λ)

- randomly select dkey $\leftarrow \mathsf{prKG}(1^{\lambda})$
- ▶ randomly select $K \leftarrow \{0,1\}^{\lambda}$ and $(sigK, vK) \leftarrow Sign.KG(1^{\lambda})$
- set $c = \mathcal{F}(K, 0) \oplus msg$
- for $i = 1, \ldots, \lambda$
 - * $\tilde{r}_i = \mathcal{F}(K, i)$ and $v_i \leftarrow \operatorname{prEnc}(\operatorname{dkey}, \operatorname{amsg}_i)$
 - **★** if $K_i = 0$

 $c_{0,i} = \mathsf{Enc}(\mathsf{PK}_{0i}, 1|v_i; \tilde{r}_i), \ c_{1,i} = \mathsf{Enc}(\mathsf{PK}_{1i}, \mathtt{dkey}), \ c_{2,i} = G(v_i)$

***** if $K_i = 1$

 $c_{0,i} = \text{Enc}(PK_{0i}, 0^{\lambda}), c_{1,i} = \text{Enc}(PK_{1i}, 1|v_i; \tilde{r}_i), c_{2,i} = G(v_i) + a_i + B \cdot vK$ \blacktriangleright sign $(c, (c_{0,i}, c_{1,i}, c_{2,i}))$ using sigK

CCA security and Anamorphism

- NY and KW are both CCA-secure
- both give anamorphism
- of different nature

Why?

CCA security and Anamorphism

Proving CCA security from CPA security

Security reduction

- two roles in two games
 - adversary in the CPA game
 - challenger in the CCA game
- generates a CCA public key
 - receives public key ppk for CPA scheme
 - produces public key cpk for the CCA scheme
 - without knowing the secret key psk associated to the input ppk
 - keeps a state state (the random coin tosses)
 - cpk is indistinguishable from a real CCA public key
- handles decryption queries
 - state is functionally a decryption query
- handles encryption queries
 - receives a CPA ciphertext pct carrying msg₀ and produces a CCA ciphertext cct on input msg₁

CRYPTO24 - August, 2024

Anamorphic

The General Plan

Observation

there are two keys at work here and two messages

- psk that recovers msg₀ from pct
- state that recovers msg1 from cct

The general plan

- generate (ppk, psk) to function as sdkey and rdkey
- derive (cpk, state) from ppk to serve as aPK and ask
- anamorphic encryption of (msg, amsg)
 - encrypt amsg using ppk = sdkey and obtain pct
 - use the encryption query procedure of the reduction on input msg and pct to produce anamorphic ciphertext act = cct carrying the two messages
- anamorphic decryption of act
 - extract pct from cct
 - decrypt with psk = rdkey

Not there yet...

Obstacles

- dictator wants to see the secret key
 - state might not look like a secret key

• we need to extract pct from cct

- these are the only two obstacles
- known reductions do satisfy the requirements

Reductions yielding Public Anamorphism

Ambiguous ciphertexts in the CCA proof

- can be *decrypted* as both challenge ciphertexts
- regular sender has negligible probability of constructing an *ambiguous* ciphertext
- reduction has some trapdoor trap
 - trapdoor associated with the CRS in NY
 - special signing key in KW
- In NY the hybrid game that uses CPA security needs trap to construct the challenge ciphertext in

trap must be in sdkey

Conclusions

What we learned

- a new notion of anamorphism
 - preserving asymmetric nature of encryption
- realized by a known scheme KP (CRYPTO '19)
- sufficient conditions on CCA proof to be turned into proof of anamorphism
- which ones give public anamorphism

Thank You