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The Model

Cell Probe Model for a Data Structure [Yao]

Memory is a sequence of cells each of w bits

Accessing (reading/writing) a cell cost 1

All computation is for free

Classical model used to derive lower bounds for Data Structures
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The Oblivious Model

Oblivious Cell Probe Model [Larsen+Nielsen ’18]

In a Client-Server setting

Client outsources storage of the DS to an honest-but-curios server

Client performs DS operations O = (op1, . . . , opl) by accessing the
Server memory

I client can read and write any cell in Server memory
I each cell is w -bit wide

Client has limited private local memory

Server observes the access pattern and the data downloaded

I viewDS(O) =
(

viewDS(op1), . . . , viewDS(opl)
)

Passive server: performs no computation

Operations are performed online
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Security Notion

Definition

DS is Oblivious, if for every PPT machine A and any two sequences O
and O ′ of the same length∣∣∣Prob

[
A(viewDS(O)) = 1

]
− Prob

[
A(viewDS(O ′)) = 1

]∣∣∣ ≤ 1

4
.
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The array maintenance problem (a.k.a. ORAM)

Two operations to maintain an n-slot array A

Read(i) returns the current value stored in A[i ]

Write(i , x) sets A[i ] := x

Theorem (Larsen+Nielsen ’18)

Expected amortized running time of an ORAM with n b-bit slots is

Ω

(
b

w
· log

nb

c

)
where c is the client memory in bits.

Online Read and Write operations with Passive Server
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Proof strategy for ORAM lower bound [Larsen+Nielsen]

The Information Transfer Technique [Pǎtraşcu+Demaine]

assign probes to nodes of the Information Tree
I each probe to at most one node

show that for most nodes v there exists a hard distribution HDv on
sequences of operations of the same length that assign lots of probes
to v

I coding argument leveraging on randomness of the entries of the array

invoke obliviousness to show that for each such distribution all nodes
must be assigned the same high number of probes
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Obliviousness

very strong requirement

it hides the type of operation

it hides the parameters of the operations

I the content of the array (for Write)
I the slot of the operation (for Read and Write)

only number of operations is leaked

In several applications more information is leaked for the sake of efficiency
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Differential Privacy

Definition

DS is (ε, δ)-DP, if for every PPT machine A and any two sequences O
and O ′ of the same length that differ for exactly one operation

Prob
[
A(vieweMM(O)) = 1

]
≤ eε · Prob

[
A(vieweMM(O ′)) = 1

]
+ δ
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The Differentially Private RAM

Theorem (P+Yeo ’19)

For every ε > 0 and δ ≤ 1/3, the expected amortized running time of a
Differentially Private RAM with n b-bit slots is

Ω

(
b

w
· log

nb

c

)
where c is the client memory in bits.

Different proof technique
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Leakage Cell Probe Model

A sequence of operations O = (op1, op2, . . . , opl) is associated with
leakage L(O)

L(O) = (L(op1), . . . ,L(opl))

Definition

DS is Non-Adaptively L-INDSecure, if for every PPT machine A and any
two sequences O and O ′ such that L(O) = L(O ′),∣∣∣Prob

[
A(viewDS(O)) = 1

]
− Prob

[
A(viewDS(O ′)) = 1

]∣∣∣ ≤ 1

4
.

Oblivious considers leakage L(O) = l
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Multi-Maps (MM)

Multi-Maps

A data structure to maintain a collection of pairs (key,~v), where
~v = (v1, . . . , vl) is a tuple

1 Add(key, v): adds v to the tuple associated with key

2 Get(key): returns the tuple associated with key

A special case of Structured Encryption [Chase-Kamara]

A generalization of ORAM:

I ORAM is a MM with all tuples of length 1;
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How expensive are EMM?

It depends on the leakage function

If no security is sought:

O

(
log log n

log log log n

)
[Beame and Fich ’99]

If only number of operations is leaked

O (log n)

Use ORAM [Folklore]

What if we only want to hide the response of the operations?

What is the cost of the Response-Hiding EMM?
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Response-Hiding Leakage Function – I

Definition (Leakage function LG for O = (op1, . . . , opl))

LG (Oi ) is defined as follows:

1 if opi = Get(keyi ) then LG (Oi ) =
(
Get, keyi ,

∣∣Get
(
MMOi−1 , keyi

)∣∣);
the key queried and the size of the response are leaked

2 if opi = Add(keyi , vi ) then LG (Oi ) =
(
Add, aepi

)
the add pattern is leaked

the type of operation is also leaked

add equality pattern aepi := (aepi
1, . . . , aepi

i−1) and aepij is defined as
follows, for j = 1, . . . , i − 1

aepi
j =


⊥, if opj is a Get operation;

0, if opj is an Add operation and keyj 6= keyi ;

1, if opj is an Add operation and keyj = keyi ;
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Response-Hiding Leakage Function – II

Definition (Leakage function LA for O = (op1, . . . , opl))

LA(Oi ) is defined as follows:

1 if opi = Get(keyi ) then LA(Oi ) =
(
Get,

∣∣Get
(
MMOi−1 , keyi

)∣∣ , gepi
)
;

the size of the response and the equality pattern are leaked

2 if opi = Add(keyi , vi ) then LA(Oi ) = (Add, keyi , vi )
all the parameters of an Add

the type of operation is also leaked

get equality pattern gepi := (gepi
1, . . . , gepi

i−1) and gepij is defined as
follows, for j = 1, . . . , i − 1

gepi
j =


⊥, if opj is a Add operation;

0, if opj is an Get operation and keyj 6= keyi ;

1, if opj is an Get operation and keyj = keyi ;
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Main result

Theorem (Informal)

LG -INDSecurity and LA-INDSecurity EMM have Ω(log n) expected
amortized overhead.

A sequence of operations that return R responses requires Ω(R · log n)
work.

This is tight [Folklore]

Use ORAM and spend O(log n)
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Proof technique

We adapt the Information Transfer technique of [P+D] to our setting

we have a weaker security notion
I can only invoke obliviousness for distribution with same leakage
I we prove lower bound for very leaky implementations

in our data structure problem entries/values are not random
I need to identify a different source of randomness for the encoding

argument
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Defining the Hard Distribution HD for LG

we have
1 the following disjoint sets of values

I V0 consisting of k values;
I V1, . . . ,Vp each consisting of nε values;

2 the following disjoint sets of keys:
I sets K a

i , for i = 1, . . . , p, each of size nε;
I sets K g

i , for i = 1, . . . , p, each of size nε;

p = n1−ε
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Defining the Hard Distribution HD

Phase 0

Execute SubPhase Ii, for i = 1, . . . , p
for each key ∈ K g

i

output: Add(key,V0),

Phase j, for j = 1, . . . , p

Execute SubPhase Aj and SubPhase Gj

SubPhase Aj

for each key ∈ K a
j ,

randomly select subset Bkey ⊂ Vj of k values
output: Add(key,Bkey);

SubPhase Gj

for each key ∈ K g
j

output: Get(key);
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The Hard Distribution HD
InitPhase

I1 I2 Ij Ip

A1 G1
. . . . . . . . . . . . Ai Gi

. . . . . . Ap Gp

Add(K g
1 ,V0) Add(K g

2 ,V0)

. . . . . . . . . . . .

Add(K g
j ,V0)

. . . . . .

Add(K g
p ,V0)

Add(K a
1 ) Get(K g

1 ) Add(K a
i ) Get(K g

i ) Add(K a
p ) Get(K g

p )
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The Information Tree of the Hard Distribution

A1 G1 A2 G2 A3 G3 A4 G4 A5 G5 A6 G6 A7 G7 A8 G8

Each probe is assigned to at most one node
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The Information Tree of the Hard Distribution

2

A1 G1 A2 G2 A3 G3 A4 G4 A5 G5 A6 G6 A7 G7 A8 G8
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The Information Tree of the Hard Distribution

31
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The Information Tree of the Hard Distribution

32
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The Information Tree of the Hard Distribution
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The Information Tree of the Hard Distribution
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The Neighbor Hard Distributions
InitPhase

I1 I2 Ij Ip

A1 G1
. . . . . . . . . . . . Ai Gi

. . . . . . Ap Gp

Add(K g
1 ,V0) Add(K g

2 ,V0)

. . . . . . . . . . . .

Add(K g
j ,V0)

. . . . . .

Add(K g
p ,V0)

Add(K a
1 ) Get(K g

1 ) Add(K a
i ) Get(K g

i ) Add(K a
p ) Get(K g

p )
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. . . . . . Ap Gp

Add(K g
1 ,V0)

same key

Add(K g
2 ,V0)

same key

. . . . . . . . . . . .

Add(K a
i )

same key

. . . . . .

same key

Add(K g
p ,V0)

Add(K a
1 )

same key

Get(K g
1 )

K g
1 , k

Add(K g
j ,V0)

same key

Get(K g
i )

K g
i , k

Add(K a
p )

same key

Get(K g
p )

K g
p , k
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v

A1 G1 A2 G2 A3 G3 A4 G4 A5 G5 A6 G6 A7 G7 A8 G8
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v

A1

K a
1

G1 A2

K a
2

G2 A3

K a
3

G3 A4

K a
4

G4 A5

K a
5

G5 A6

K a
6

G6 A7

K a
7

G7 A8

K a
8

G8
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v

A1

K a
1

G1

K g
1

A2

K a
2

G2

K g
2

A3

K a
3

G3

K g
3

A4

K a
4

G4

K g
4

A5

K a
5

G5

K g
5

A6

K a
6

G6

K g
6

A7

K a
7

G7

K g
7

A8

K a
8

G8

K g
8
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v

A1

K g
5

G1

K g
1

A2

K g
6

G2

K g
2

A3

K g
7

G3

K g
3

A4

K g
8

G4

K g
4

A5

K a
5

G5

K g
5

A6

K a
6

G6

K g
6

A7

K a
7

G7

K g
7

A8

K a
8

G8

K g
8

HDv: Hard distribution at v
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v

A1

K g
5

G1 A2

K g
6

G2 A3

K g
7

G3 A4

K g
8

G4 A5 G5

K g
5

A6 G6

K g
6

A7 G7

K g
7

A8 G8

K g
8

HDv: Hard distribution at v
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Get operations in the right subtree

Client memory

Add operations in the left subtree
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Get operations in the right subtree

Add operations in the left subtree

Client memory Cells overwritten in right subtree

each keyword receives
k random values
from a set of nε
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Get operations in the right subtree

Add operations in the left subtree

Client memory Cells overwritten in right subtree

Entropy:
log
(nε
k

)
Ω(k log n) bits
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Theorem

For every v of the information tree of depth 8 ≤ d ≤ 1−ε
2 log n

c

E [|Count(v)|] = Ω

(
n

2d
· k · log n

w

)
with respect to HDv .

For every v , LG (HDv) = LG (HD), so by LG -INDsecurity,

Theorem

For every v of the information tree of depth 8 ≤ d ≤ 1−ε
2 log n

c

E [|Count(v)|] = Ω

(
n

2d
· k · log n

w

)
with respect to HD.
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Wrapping up
For an eMM that is LG -IND secure

each probe contributes 1 to at most one Count(v).

I
∑

v Count(v) is a lower bound to the number of probes

level d has 2d nodes,

I each level contributes n · k · log n
w

we have Θ(log n
c ) levels

number of probes is

Ω

(
n · k · log n

w
· log

n

c

)
to execute

I Θ(nk) Add
I Θ(n) Get each with Θ(k) results each

amortized efficiency per response

Ω

(
log n

w
· log

n

c

)
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Typical parameter regime

w = Ω(log n) and c = nα, α < 1.

amortized efficiency per response of an eMM is

Ω (log n)

Same for LA leakage function
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Conclusions

Response Hiding in a mildly Dynamic setting gives Ω(log n) overhead

I static EMM can be implemented with constant slowdown via cuckoo
hashing

I proof only uses addition of values to keys

I no remove operation
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