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Oblivious RAMS

Hiding the access pattern to the RAM from the server

Upper bounds

@ Goldreich Ostrovsky — Late 80's early 90’
Slowdown O(log® n)

° ...

o Patel Persiano Raykova Yeo — 2018
Slowdown O(log nlog log n)

@ Asharov Komogordsky Lin Peserico Shi — 2018
Slowdown O(log n)
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Oblivious RAMS

Hiding the access pattern to the RAM from the server

Upper bounds

@ Goldreich Ostrovsky — Late 80’s early 90’
Slowdown O(log® n)

° ...

o Patel Persiano Raykova Yeo — 2018
Slowdown O(log nloglog n)

@ Asharov Komogordsky Lin Peserico Shi — 2018
Slowdown O(log n)

Lower bounds

@ Larsen Nielsen — 2018
Slowdown Q(log n)

@ It holds also for Differential Privacy, some leakage

v

ESSA3  3/27



The snapshot adversary

the Server is the adversary
Snapshot Adversary
Du, Genkin, Grubbs, 2022

@ The adversary gets control of the Server for L consecutive operations
Slowdown O(log L)
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The snapshot adversary

the Server is the adversary
Snapshot Adversary
Du, Genkin, Grubbs, 2022

@ The adversary gets control of the Server for L consecutive operations
Slowdown O(log L)

What if the adversary is active for more than one window?
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Snapshot Resistant Stacks

@ read — write
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Snapshot Resistant Stacks

@ push — pop

@ want to hide sequence of operations
> hide if push or pop
> hide input to push

@ hiding from whom

» Adversary that can see S memory snapshots
» Adversary that can see T operations transcripts
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(00, 0)-snapshot secure stacks

Adversary gets snapshots of memory after all operations and no transcript
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(00, 0)-snapshot secure stacks
Adversary gets snapshots of memory after all operations and no transcript
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(00, 0)-snapshot secure stacks
Adversary gets snapshots of memory after all operations and no transcript
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Snapshot Secure Stacks

e Init()

randomly choose encryption key K
set cnt = 0 and top = —1.

@ Push(v)
upload Enc(K, (v, top)) to location cnt
set top < cnt
set cnt <— cnt +1

@ Pop()
download pair (v, t) from location top
upload a dummy encryption to location cnt
set top <t
set cnt +— cnt + 1
return v )

ESSA3  7/21



Snapshot Security
Snapshots:

Only difference between operation i and operation i + 1 in location i



Snapshot Security
Snapshots:

Only difference between operation i and operation i + 1 in location i
independent from history of ops
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Snapshot Security

Snapshots:

Only difference between operation i and operation i + 1 in location i
independent from history of ops
Transcripts:

Client reaches for the current top
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Snapshot Security

Snapshots:
Only difference between operation i and operation i + 1 in location i
independent from history of ops

Transcripts:
Client reaches for the current top

Gives information about number of push ops vs number of pop ops
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Snapshot Security

Snapshots:
Only difference between operation i and operation i + 1 in location i
independent from history of ops

Transcripts:
Client reaches for the current top

Gives information about number of push ops vs number of pop ops

randomly select a PRP F and write new pair at F(cnt)

ESSA3 /27



(00, 1)-snapshot secure stacks

A gets snapshots of memory after every operations and transcript for one.
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(00, 1)-snapshot secure stacks
A gets snapshots of memory after every operations and transcript for one.

Snapshot Secure Stacks

e Init()
randomly choose seed S
randomly choose encryption key K
set cnt = 0 and top = —1.

@ Push(v)
download from location F(S,top) and discard
upload Enc(K, (v, top)) to location F(S, cnt)
top < cnt
cnt < cnt + 1

e Pop()
download pair (v, t) from location F(S, top)
upload dummy encryption at location F(S, cnt)
set top < t
set cnt < cnt + 1
return v y
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This looks very promising

@ Constant slowdown against snapshot adversary

» for the same price | can throw in one transcript of your choice
@ For persistent adversaries, stack is as hard as ORAM

» Oblivious stack requires

Q(b/w)log(nb/c)

Riko Jacob, Kasper Green Larsen, Jesper Buus Nielsen. SODA 2019.
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@ Constant slowdown against snapshot adversary

» for the same price | can throw in one transcript of your choice
@ For persistent adversaries, stack is as hard as ORAM

» Oblivious stack requires

Q(b/w)log(nb/c)

Riko Jacob, Kasper Green Larsen, Jesper Buus Nielsen. SODA 2019.
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This looks very promising

@ Constant slowdown against snapshot adversary

» for the same price | can throw in one transcript of your choice
@ For persistent adversaries, stack is as hard as ORAM

» Oblivious stack requires

Q(b/w)log(nb/c)

Riko Jacob, Kasper Green Larsen, Jesper Buus Nielsen. SODA 2019.
@ Actually, not! for ORAM is still

Q(b/w)log(nb/c)

Sorry
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The snapshot adversary
Snapshot window (t, ¢)

@ A snapshot window of length / starting at time t.
@ The adversary receives

snapshot of server memory content before operation t has been
executed

transcript of server's operations for the following / operations that take
place at times .+ 1,..., t+4—1.

e For / = 0, only memory content before operation .

A (S, L)-snapshot adversary
Specifies a sequence of snaspshot windows S = ((t1,/1)....,(ts,/s)) such
that
@ 5 < S, at most S windows,
at most S snapshots

@ > [; < L, for a total duration of at most [ operations
at most L transcripts

v
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The Lower Bound

Theorem

For any 0 < e < 1/16, let DS be a (3,1, €)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Q(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized

write time t,, and expected amortized read time t, with failure probability
at most 1/3, then

tr+ tw = Q(b/w - log(nb/c)).
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The Lower Bound

Theorem

For any 0 < e < 1/16, let DS be a (3,1, €)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Q(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time t,, and expected amortized read time t, with failure probability
at most 1/3, then

tr+ tw = Q(b/w - log(nb/c)).

n logical blocks of b bits
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The Lower Bound

Theorem

For any 0 < e < 1/16, let DS be a (3,1, €)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Q(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time t,, and expected amortized read time t, with failure probability
at most 1/3, then

tr+ tw = Q(b/w - log(nb/c)).

w < b is size physical words
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The Lower Bound

Theorem

For any 0 < e < 1/16, let DS be a (3,1, €)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Q(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time t,, and expected amortized read time t, with failure probability
at most 1/3, then

tr+ tw = Q(b/w - log(nb/c)).

Client has ¢ bits of /local memory
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The Lower Bound

Theorem

For any 0 < e < 1/16, let DS be a (3, 1,e)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Q(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time t,, and expected amortized read time t, with failure probability
at most 1/3, then

tr+ tw = Q(b/w - log(nb/c)).

v

Adversary receives at most 3 memory snapshots and 1 operation transcript
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The Lower Bound

Theorem

For any 0 < e < 1/16, let DS be a (3,1, €)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Q(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time t,, and expected amortized read time t, with failure probability
at most 1/3, then

tr+ tw = Q(b/w - log(nb/c)).

€ is the adversary’s advantage in the security game

(5+G) ESSA 3 12/27



The security game

EXptDSA
@ Receive (O, O1, ((t1,01),...,(ts,ls))) from Ap(1").
@ Set L+, DS« (Ry,...,Ry), i+ 1.
e While i < |Ogl:
» If i =t; for some 1 < j <s:

* Set £ + L || (memory, M).
* Fork=1,...,¢:
Execute DS BVrite (O, [i]) and set i i+ 1.

» Else: .
Execute DSR4Write(0,[i]) and set i + i + 1.

@ Return A;(£).

Pr[ExptDSA =1] - Pr[ExptDS A=1]| <

for all PPT A that are (S, L)-snapshot adversaries.
ESSA3  13/27



The Epoch structure
The sequence and the epochs
o n logical indices
e m« {n/2+1,...,n}
e m writes of random b-bit blocks at indices 1,2,... , m

o followed by one read.
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A (3, 1)-snapshot adversary — Intuition

@ Two sequences of operations Oy, O,

o =] = = DA
(S+G)
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A (3, 1)-snapshot adversary — Intuition
@ Two sequences of operations Oy, O,
» Op reads index 1

» Both write random blocks to the first m indices

» O; reads a randomly selected index j written in the i-th epoch

o =] = = DA
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» Both write random blocks to the first m indices
» Op reads index 1
» O; reads a randomly selected index j written in the i-th epoch
@ correctness of Oy
touch about b/w cells updated in epoch /
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» epochs following epoch i are not large enough
» pick i so that client memory is too small



» Op reads index 1

A (3, 1)-snapshot adversary — Intuition

@ Two sequences of operations Oy, O,

» Both write random blocks to the first m indices
@ correctness of Oy

@ correctness of Oy

» O; reads a randomly selected index j written in the i-th epoch
touch about b/w cells updated in epoch /
» epochs following epoch i are not large enough

» epochs preceding epoch i are independent

» pick i so that client memory is too small

read of Oy does not depend on epoch |
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A (3, 1)-snapshot adversary — Intuition

@ Two sequences of operations Oy, O,

» Both write random blocks to the first m indices
» Op reads index 1

» O; reads a randomly selected index j written in the i-th epoch
@ correctness of Oy
touch about b/w cells updated in epoch /

» epochs preceding epoch i are independent
» epochs following epoch i are not large enough
» pick i so that client memory is too small

@ correctness of Oy

read of Oy does not depend on epoch |
@ security

but if it does not, then security fails
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A (3, 1)-snapshot adversary — Intuition

@ Two sequences of operations Oy, O,

» Both write random blocks to the first m indices
» Op reads index 1
» O; reads a randomly selected index j written in the i-th epoch

@ correctness of Oy
touch about b/w cells updated in epoch /
» epochs preceding epoch i are independent
» epochs following epoch i are not large enough
» pick i so that client memory is too small
@ correctness of Oy
read of Oy does not depend on epoch |
@ security
but if it does not, then security fails
o final step
this holds for all epochs except for those that have fewer than ¢/b
writes.
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A (3, 1)-snapshot adversary — Intuition

@ Two sequences of operations Oy, O,
» Both write random blocks to the first m indices
» Op reads index 1
» O; reads a randomly selected index j written in the i-th epoch

@ correctness of Oy
touch about b/w cells updated in epoch /
» epochs preceding epoch i are independent
» epochs following epoch i are not large enough
» pick i so that client memory is too small
@ correctness of Oy
read of Oy does not depend on epoch |
@ security
but if it does not, then security fails
o final step
this holds for all epochs except for those that have fewer than ¢/b
writes.

e we have a lower bound Q(b/w - log(nb/c))_

=] = = T 9ac
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A (3,1)-snapshot adversary — Part 0

Ap(17)
e Randomly select integer m from [n/2, n].
@ Randomly and ind. select By,...,B,, «+ {0,1}".
@ Set Oy = (write(1,Bq),...,write(m, By,), read(m)).
@ Randomly select j € [p;, pi + r' — 1],
@ Set O; = (write(1,Bq),. .., write(m, By,), read(j)).
e Set S = ((pi,0),(pi + r',0),(m+1,1)).
@ Return (Op, 01, S).




A (3,1)-snapshot adversary — Part 0

Ap(17)
e Randomly select integer m from [n/2, n].
@ Randomly and ind. select By,...,B,, «+ {0,1}".

@ Set Oy = (write(1,Bq),...,write(m, By,), read(m)).

@ Randomly select j € [p;, pi + r' — 1],

@ Set O; = (write(1,Bq),. .., write(m, By,), read(j)).
® Set S = ((p;,0), (pi + ', 0),(m+1,1)).

@ Return (Op, 01, S).

@ (p;.0): snapshot of server memory before epoch i
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A (3,1)-snapshot adversary — Part 0

Ap(17)
e Randomly select integer m from [n/2, n].
@ Randomly and ind. select By,...,B,, «+ {0,1}".
@ Set Oy = (write(1,Bq),...,write(m, By,), read(m)).
e Randomly select j € [p;, pi + r' — 1],
@ Set O; = (write(1,Bq),. .., write(m, Bp,), read(j)).
e Set S = ((pi,0),(pi + r',0),(m+1,1)).
@ Return (O, 01, S).

@ (p;.0): snapshot of server memory before epoch i
@ (p; + r',0): snapshot of server memory after epoch i
°

(m+ 1.1): snapshot before read and transcript of read operation
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A (3,1)-snapshot adversary — Part 0

A(17)
e Randomly select integer m from [n/2, n].
@ Randomly and ind. select By,...,B,, «+ {0,1}". Important
@ Set Oy = (write(1,Bq),...,write(m, By,), read(m)).
e Randomly select j € [p;, pi + r' — 1],
@ Set O; = (write(1,Bq),. .., write(m, Bp,), read(j)).
e Set S = ((pi,0),(pi + r',0),(m+1,1)).
@ Return (O, 01, S).

@ (p;.0): snapshot of server memory before epoch i
@ (p; + r',0): snapshot of server memory after epoch i
°

(m+ 1.1): snapshot before read and transcript of read operation
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A (3, 1)-snapshot adversary — Part 1

U; memory locations overwritten during epoch i
» by comparing the initial and final snapshot of epoch i

Vi memory locations overwritten since epoch i
» by comparing the final snapshot of epoch i with snapshot before the
read

o /; memory location overwritten during epoch / that have not been
modified when the read starts

» Wi=U;\V,
o Qj cells from W; read during read()),
o |Qj|=b/w

» A returns 0 iff [Q;| < p- b/w

(S5+G) ESSA 3 17 /27



The coding argument

Suppose

tw = o(b/w log(nb/c))

then there exists p > 0 such that, for most epochs i,

|Qjl = p-b/w
with probability > 1/8 for j in epoch /.
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The coding argument

Suppose
tw = o(b/w log(nb/c))
then there exists p > 0 such that, for most epochs i,

|Qjl = p-b/w

with probability > 1/8 for j in epoch /.
Suppose not.
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The coding argument

Suppose
tw = o(b/wlog(nb/c))

then there exists p > 0 such that, for most epochs i,
|Qjl = p-b/w

with probability > 1/8 for j in epoch /.

Suppose not.
Then we can encode the r' - b bits of epoch i using fewer bits.

(S+G) ESSA 3 18 /27



The coding argument - |

A coding game
@ S wants to send B to R

the r’ blocks from epoch i

@ S and R share
B~/ (all except epoch i)
randomness R to execute DS.

H(B'|R,B™)=r"-b.

(S5+G) ESSA 3 19/27



The coding argument - |l

@ S and R execute all epochs > f

write(1,B1), ..., write(p; — 1,Bp,1)

=] F = = £ DA



The coding argument

@ S executes epoch i
write(p;, Bp,), - .., write(pi +r' —1,B, 1 ,i_1)
@ Note: R cannot execute epoch i

123
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The coding argument
@ S and R execute epochs </

» R needs some help
* client memory: c bits.

o Forj=pi_1,...,m
» execute write(j, B;) touching T;
» R needs U; N T; (cell location and content)

Wr.th(;'Bj)
123 HaM

TR L B T ]

7]
[eliogt

Wnam, VB
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The coding argument
o cbits+set Vi :=UN(Tpyr,U---UTp)
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The coding argument

S memory state after write(m, B,)

o Forj=pj,....pi+r —1
» S and R execute read(j) starting from S
» R needs Q; := W;nN Tj”’
» if read errs or Q; > pb/w
* Bj is added to encoding
> else
* Q; is added to encoding

(S+G) ESSA3  24/27



Length of encoding
Length depends on
o Set Y;
» for most epochs i, E[|Y;|]] < r'=tb/w
@ Set Qj

» By assumption |Qj| < p- b/w with prob > 7/8

(5+G)



Length of encoding

Length depends on
o Set Y;
» for most epochs i, E[|Y;]] < fi_lb/w

@ Set Qj
» By assumption |Qj| < p- b/w with prob > 7/8

Encoding is too small

(S5+G) ESSA 3 25 /27



Getting there...

implies that, for most epochs /,

tw = o(b/wlog(nb/c))

|Qjl = p-b/w
with probability > 1/8 for j in epoch /.

from epoch .
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Getting there...

tw = o(b/w log(nb/c))

implies that, for most epochs /,

A outputs 1 with probability > 1/8 when reading j from epoch /.
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Getting there...
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Getting there...

tw = o(b/wlog(nb/c))

implies that, for most epochs /,

A outputs 1 with probability > 1/8 when reading j from epoch /.
If ¢ = 1/16 then A outputs 1 with probability > 1/16 when reading m

read(m) must touch > p- b/w cells from epoch /

Q(b/w -lognb/c)
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Wrapping up
Now

If writes are fast

tw = o(b/w log(nb/c))

then read(j) in epoch / has Q; = Q(b/w) with prob at least 1/8.




Wrapping up

Now...

If writes are fast
tw = o(b/wlog(nb/c))
then read(j) in epoch / has Q; = Q(b/w) with prob at least 1/8.

Reading 1

Must touch from each large epoch O(b/w) cells otherwise we lose security.

Q(b/w - log(nb/c))
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