Limits of Breach-Resistant and Snapshot-Oblivious RAMs
 Still $\Omega(b / w \cdot \log (n b / c))$

Giuseppe Persiano

Università di Salerno and Google LLC

ESSA 3 in Bertinoro

```
Joint work with Kevin Yeo (Google LLC and Columbia U.) Accepted to CRYPTO 23
```

RAMS

RAMS

RAMS

Server memory words of length $w<b$

Oblivious RAMS

Hiding the access pattern to the RAM from the server

Upper bounds

- Goldreich Ostrovsky - Late 80 's early 90 '

Slowdown $O\left(\log ^{3} n\right)$
....

- Patel Persiano Raykova Yeo - 2018

Slowdown $O(\log n \log \log n)$

- Asharov Komogordsky Lin Peserico Shi - 2018

Slowdown $O(\log n)$

Oblivious RAMS

Hiding the access pattern to the RAM from the server

Upper bounds

- Goldreich Ostrovsky - Late 80 's early 90 ' Slowdown $O\left(\log ^{3} n\right)$
-
- Patel Persiano Raykova Yeo - 2018

Slowdown $O(\log n \log \log n)$

- Asharov Komogordsky Lin Peserico Shi - 2018 Slowdown $O(\log n)$

Lower bounds

- Larsen Nielsen - 2018
- Slowdown $\Omega(\log n)$
- It holds also for Differential Privacy, some leakage

The snapshot adversary

the Server is the adversary
Snapshot Adversary
Du, Genkin, Grubbs, 2022

- The adversary gets control of the Server for L consecutive operations Slowdown $O(\log L)$

The snapshot adversary

the Server is the adversary
Snapshot Adversary
Du, Genkin, Grubbs, 2022

- The adversary gets control of the Server for L consecutive operations Slowdown $O(\log L)$

What if the adversary is active for more than one window?

Snapshot Resistant Stacks

- read - write

Snapshot Resistant Stacks

- push - pop

Snapshot Resistant Stacks

- push - pop
- want to hide sequence of operations
- hide if push or pop
- hide input to push

Snapshot Resistant Stacks

- push - pop
- want to hide sequence of operations
- hide if push or pop
- hide input to push
- hiding from whom
- Adversary that can see S memory snapshots
- Adversary that can see T operations transcripts
$(\infty, 0)$-snapshot secure stacks
Adversary gets snapshots of memory after all operations and no transcript

$$
S=\infty
$$

$$
T=0
$$

$(\infty, 0)$-snapshot secure stacks
Adversary gets snapshots of memory after all operations and no transcript

$$
S=\infty
$$

$$
T=0
$$

$(\infty, 0)$-snapshot secure stacks
Adversary gets snapshots of memory after all operations and no transcript

$$
S=\infty
$$

$$
T=0
$$

Snapshot Secure Stacks

- Init()
randomly choose encryption key K
set cnt $=0$ and top $=-1$.
- Push(v)
upload $\operatorname{Enc}(K,(v$, top $))$ to location cnt
set top \leftarrow cnt
set cnt \leftarrow cnt +1
- Pop()
download pair (v, t) from location top
s upload a dummy encryption to location cnt
set top $\leftarrow t$
set cnt \leftarrow cnt +1
return v

Snapshot Security

Snapshots:

Only difference between operation i and operation $i+1$ in location i

Snapshot Security

Snapshots:
Only difference between operation i and operation $i+1$ in location i independent from history of ops

Snapshot Security

Snapshots:

Only difference between operation i and operation $i+1$ in location i independent from history of ops

Transcripts:
Client reaches for the current top

Snapshot Security

Snapshots:

Only difference between operation i and operation $i+1$ in location i independent from history of ops

Transcripts:
Client reaches for the current top
Gives information about number of push ops vs number of pop ops

Snapshot Security

Snapshots:

Only difference between operation i and operation $i+1$ in location i independent from history of ops

Transcripts:
Client reaches for the current top
Gives information about number of push ops vs number of pop ops
randomly select a PRP F and write new pair at $F(\mathrm{cnt})$
$(\infty, 1)$-snapshot secure stacks
\mathcal{A} gets snapshots of memory after every operations and transcript for one.
$(\infty, 1)$-snapshot secure stacks
\mathcal{A} gets snapshots of memory after every operations and transcript for one.

Snapshot Secure Stacks

- Init()
randomly choose seed S
randomly choose encryption key K
set cnt $=0$ and top $=-1$.
- Push(v)
download from location $F(S$, top $)$ and discard
upload $\operatorname{Enc}(K,(v$, top $))$ to location $F(S$, cnt $)$
top \leftarrow cnt
$>\mathrm{cnt} \leftarrow \mathrm{cnt}+1$
- Pop()
download pair (v, t) from location $F(S$, top $)$
- upload dummy encryption at location $F(S, \mathrm{cnt})$
- set top $\leftarrow t$
- set cnt $\leftarrow \mathrm{cnt}+1$
return v

This looks very promising

- Constant slowdown against snapshot adversary
- for the same price I can throw in one transcript of your choice
- For persistent adversaries, stack is as hard as ORAM
- Oblivious stack requires

$$
\Omega(b / w) \log (n b / c)
$$

Riko Jacob, Kasper Green Larsen, Jesper Buus Nielsen. SODA 2019.

This looks very promising

- Constant slowdown against snapshot adversary
- for the same price I can throw in one transcript of your choice
- For persistent adversaries, stack is as hard as ORAM
- Oblivious stack requires

$$
\Omega(b / w) \log (n b / c)
$$

Riko Jacob, Kasper Green Larsen, Jesper Buus Nielsen. SODA 2019.

- Actually, not! for ORAM is still

$$
\Omega(b / w) \log (n b / c)
$$

This looks very promising

- Constant slowdown against snapshot adversary
- for the same price I can throw in one transcript of your choice
- For persistent adversaries, stack is as hard as ORAM
- Oblivious stack requires

$$
\Omega(b / w) \log (n b / c)
$$

Riko Jacob, Kasper Green Larsen, Jesper Buus Nielsen. SODA 2019.

- Actually, not! for ORAM is still

$$
\Omega(b / w) \log (n b / c)
$$

Sorry

The snapshot adversary

Snapshot window (t, ℓ)

- A snapshot window of length ℓ starting at time t.
- The adversary receives
snapshot of server memory content before operation t has been executed
transcript of server's operations for the following ℓ operations that take place at times $t, t+1, \ldots, t+\ell-1$.
- For $\ell=0$, only memory content before operation t.

A (S, L)-snapshot adversary
Specifies a sequence of snaspshot windows $\mathcal{S}=\left(\left(t_{1}, \ell_{1}\right), \ldots,\left(t_{s}, \ell_{s}\right)\right)$ such that

- $s \leq S$, at most S windows,
at most S snapshots
- $\sum \ell_{i} \leq L$, for a total duration of at most L operations at most L transcripts

The Lower Bound

Theorem

For any $0 \leq \epsilon \leq 1 / 16$, let DS be a $(3,1, \epsilon)$-snapshot private $R A M$ data structure for n entries each of b bits implemented over $w=\Omega(\log n)$ bits using client storage of c bits in the cell probe model. If DS has amortized write time t_{w} and expected amortized read time t_{r} with failure probability at most $1 / 3$, then

$$
t_{r}+t_{w}=\Omega(b / w \cdot \log (n b / c))
$$

The Lower Bound

Theorem

For any $0 \leq \epsilon \leq 1 / 16$, let DS be a $(3,1, \epsilon)$-snapshot private RAM data structure for n entries each of b bits implemented over $w=\Omega(\log n)$ bits using client storage of c bits in the cell probe model. If DS has amortized write time t_{w} and expected amortized read time t_{r} with failure probability at most $1 / 3$, then

$$
t_{r}+t_{w}=\Omega(b / w \cdot \log (n b / c))
$$

n logical blocks of b bits

The Lower Bound

Theorem

For any $0 \leq \epsilon \leq 1 / 16$, let DS be a $(3,1, \epsilon)$-snapshot private RAM data structure for n entries each of b bits implemented over $w=\Omega(\log n)$ bits using client storage of c bits in the cell probe model. If DS has amortized write time t_{w} and expected amortized read time t_{r} with failure probability at most $1 / 3$, then

$$
t_{r}+t_{w}=\Omega(b / w \cdot \log (n b / c))
$$

$w<b$ is size physical words

The Lower Bound

Theorem

For any $0 \leq \epsilon \leq 1 / 16$, let DS be a $(3,1, \epsilon)$-snapshot private RAM data structure for n entries each of b bits implemented over $w=\Omega(\log n)$ bits using client storage of c bits in the cell probe model. If DS has amortized write time t_{w} and expected amortized read time t_{r} with failure probability at most $1 / 3$, then

$$
t_{r}+t_{w}=\Omega(b / w \cdot \log (n b / c))
$$

Client has c bits of local memory

The Lower Bound

Theorem

For any $0 \leq \epsilon \leq 1 / 16$, let DS be a $(3,1, \epsilon)$-snapshot private RAM data structure for n entries each of b bits implemented over $w=\Omega(\log n)$ bits using client storage of c bits in the cell probe model. If DS has amortized write time t_{w} and expected amortized read time t_{r} with failure probability at most $1 / 3$, then

$$
t_{r}+t_{w}=\Omega(b / w \cdot \log (n b / c))
$$

Adversary receives at most 3 memory snapshots and 1 operation transcript

The Lower Bound

Theorem

For any $0 \leq \epsilon \leq 1 / 16$, let DS be a $(3,1, \epsilon)$-snapshot private RAM data structure for n entries each of b bits implemented over $w=\Omega(\log n)$ bits using client storage of c bits in the cell probe model. If DS has amortized write time t_{w} and expected amortized read time t_{r} with failure probability at most $1 / 3$, then

$$
t_{r}+t_{w}=\Omega(b / w \cdot \log (n b / c)) .
$$

ϵ is the adversary's advantage in the security game

The security game

$\operatorname{Expt}_{\mathrm{DS}, \mathcal{A}}^{n, \beta}$

- Receive $\left(O_{0}, O_{1},\left(\left(t_{1}, \ell_{1}\right), \ldots,\left(t_{s}, \ell_{s}\right)\right)\right)$ from $\mathcal{A}_{0}\left(1^{n}\right)$.
- Set $\mathcal{L} \leftarrow \emptyset, \mathrm{DS} \leftarrow\left(R_{1}, \ldots, R_{n}\right), i \leftarrow 1$.
- While $i \leq\left|O_{\beta}\right|$:
- If $i=t_{j}$ for some $1 \leq j \leq s$:

$$
\star \text { Set } \mathcal{L} \leftarrow \mathcal{L} \| \text { (memory, } M \text {). }
$$

\star For $k=1, \ldots, \ell_{j}$:
Execute $\operatorname{DS}^{\text {LRead, LWrite }}\left(O_{b}[i]\right)$ and set $i \leftarrow i+1$.

- Else:

$$
\text { Execute DS Read,Write }\left(O_{b}[i]\right) \text { and set } i \leftarrow i+1
$$

- Return $\mathcal{A}_{1}(\mathcal{L})$.

$$
\left|\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{DS}, \mathcal{A}}^{n, 0}=1\right]-\operatorname{Pr}\left[\operatorname{Expt}_{\mathrm{DS}, \mathcal{A}}^{n, 1}=1\right]\right| \leq \epsilon,
$$

for all PPT \mathcal{A} that are (S, L)-snapshot adversaries.

The Epoch structure

The sequence and the epochs

- n logical indices
- $m \leftarrow\{n / 2+1, \ldots, n\}$
- m writes of random b-bit blocks at indices $1,2, \ldots, m$
- followed by one read.

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1
- O_{1} reads a randomly selected index j written in the i-th epoch

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1
- O_{1} reads a randomly selected index j written in the i-th epoch
- correctness of O_{1}
touch about b / w cells updated in epoch i

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1
- O_{1} reads a randomly selected index j written in the i-th epoch
- correctness of O_{1}
touch about b / w cells updated in epoch i
- epochs preceding epoch i are independent

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1
- O_{1} reads a randomly selected index j written in the i-th epoch
- correctness of O_{1}
touch about b / w cells updated in epoch i
- epochs preceding epoch i are independent
- epochs following epoch i are not large enough

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1
- O_{1} reads a randomly selected index j written in the i-th epoch
- correctness of O_{1}
touch about b / w cells updated in epoch i
- epochs preceding epoch i are independent
- epochs following epoch i are not large enough
- pick i so that client memory is too small

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1
- O_{1} reads a randomly selected index j written in the i-th epoch
- correctness of O_{1}
touch about b / w cells updated in epoch i
- epochs preceding epoch i are independent
- epochs following epoch i are not large enough
- pick i so that client memory is too small
- correctness of O_{0} read of O_{0} does not depend on epoch i

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1
- O_{1} reads a randomly selected index j written in the i-th epoch
- correctness of O_{1}
touch about b / w cells updated in epoch i
- epochs preceding epoch i are independent
- epochs following epoch i are not large enough
- pick i so that client memory is too small
- correctness of O_{0} read of O_{0} does not depend on epoch i
- security
but if it does not, then security fails

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1
- O_{1} reads a randomly selected index j written in the i-th epoch
- correctness of O_{1}
touch about b / w cells updated in epoch i
- epochs preceding epoch i are independent
- epochs following epoch i are not large enough
- pick i so that client memory is too small
- correctness of O_{0} read of O_{0} does not depend on epoch i
- security
but if it does not, then security fails
- final step
this holds for all epochs except for those that have fewer than c / b writes.

A $(3,1)$-snapshot adversary - Intuition

- Two sequences of operations O_{0}, O_{1}
- Both write random blocks to the first m indices
- O_{0} reads index 1
- O_{1} reads a randomly selected index j written in the i-th epoch
- correctness of O_{1}
touch about b / w cells updated in epoch i
- epochs preceding epoch i are independent
- epochs following epoch i are not large enough
- pick i so that client memory is too small
- correctness of O_{0} read of O_{0} does not depend on epoch i
- security
but if it does not, then security fails
- final step
this holds for all epochs except for those that have fewer than c / b writes.
- we have a lower bound $\Omega(b / w \cdot \log (n b / c))$

A (3, 1)-snapshot adversary - Part 0

$\mathcal{A}_{0}^{i}\left(1^{n}\right)$

- Randomly select integer m from $[n / 2, n]$.
- Randomly and ind. select $B_{1}, \ldots, B_{m} \leftarrow\{0,1\}^{b}$.
- Set $O_{0}=\left(\right.$ write $\left(1, \mathrm{~B}_{1}\right), \ldots$, write $\left(m, \mathrm{~B}_{m}\right)$, read $\left.(m)\right)$.
- Randomly select $j \in\left[p_{i}, p_{i}+r^{i}-1\right]$,
- Set $O_{1}=\left(\right.$ write $\left(1, B_{1}\right), \ldots$, write $\left(m, B_{m}\right)$, $\left.\operatorname{read}(j)\right)$.
- Set $\mathcal{S}=\left(\left(p_{i}, 0\right),\left(p_{i}+r^{i}, 0\right),(m+1,1)\right)$.
- Return $\left(O_{0}, O_{1}, S\right)$.

A (3, 1)-snapshot adversary - Part 0

$\mathcal{A}_{0}^{i}\left(1^{n}\right)$

- Randomly select integer m from $[n / 2, n]$.
- Randomly and ind. select $B_{1}, \ldots, B_{m} \leftarrow\{0,1\}^{b}$.
- Set $O_{0}=\left(\right.$ write $\left(1, \mathrm{~B}_{1}\right), \ldots$, write $\left(m, \mathrm{~B}_{m}\right)$, read $\left.(m)\right)$.
- Randomly select $j \in\left[p_{i}, p_{i}+r^{i}-1\right]$,
- Set $O_{1}=\left(\right.$ write $\left(1, B_{1}\right), \ldots$, write $\left.\left(m, B_{m}\right), \operatorname{read}(j)\right)$.
- Set $\mathcal{S}=\left(\left(p_{i}, 0\right),\left(p_{i}+r^{i}, 0\right),(m+1,1)\right)$.
- Return $\left(O_{0}, O_{1}, S\right)$.
- $\left(p_{i}, 0\right)$: snapshot of server memory before epoch i

A (3, 1)-snapshot adversary - Part 0

$\mathcal{A}_{0}^{i}\left(1^{n}\right)$

- Randomly select integer m from $[n / 2, n]$.
- Randomly and ind. select $B_{1}, \ldots, B_{m} \leftarrow\{0,1\}^{b}$.
- Set $O_{0}=\left(\right.$ write $\left(1, \mathrm{~B}_{1}\right), \ldots$, write $\left(m, \mathrm{~B}_{m}\right)$, read $\left.(m)\right)$.
- Randomly select $j \in\left[p_{i}, p_{i}+r^{i}-1\right]$,
- Set $O_{1}=\left(\right.$ write $\left(1, B_{1}\right), \ldots$ write $\left(m, B_{m}\right)$, read $\left.(j)\right)$.
- Set $\mathcal{S}=\left(\left(p_{i}, 0\right),\left(p_{i}+r^{i}, 0\right),(m+1,1)\right)$.
- Return $\left(O_{0}, O_{1}, S\right)$.
- $\left(p_{i}, 0\right)$: snapshot of server memory before epoch i
- ($p_{i}+r^{i}, 0$): snapshot of server memory after epoch i

A $(3,1)$-snapshot adversary - Part 0
$\mathcal{A}_{0}^{i}\left(1^{n}\right)$

- Randomly select integer m from $[n / 2, n]$.
- Randomly and ind. select $B_{1}, \ldots, B_{m} \leftarrow\{0,1\}^{b}$.
- Set $O_{0}=\left(\right.$ write $\left(1, \mathrm{~B}_{1}\right), \ldots$, write $\left(m, \mathrm{~B}_{m}\right)$, $\left.\operatorname{read}(m)\right)$.
- Randomly select $j \in\left[p_{i}, p_{i}+r^{i}-1\right]$,
- Set $O_{1}=\left(\right.$ write $\left(1, B_{1}\right), \ldots$, write $\left(m, B_{m}\right)$, $\left.\operatorname{read}(j)\right)$.
- Set $\mathcal{S}=\left(\left(p_{i}, 0\right),\left(p_{i}+r^{i}, 0\right),(m+1,1)\right)$.
- Return $\left(O_{0}, O_{1}, S\right)$.
- $\left(p_{i}, 0\right)$: snapshot of server memory before epoch i
- ($p_{i}+r^{i}, 0$): snapshot of server memory after epoch i
- $(m+1,1)$: snapshot before read and transcript of read operation

A $(3,1)$-snapshot adversary - Part 0
$\mathcal{A}_{0}^{i}\left(1^{n}\right)$

- Randomly select integer m from $[n / 2, n]$.
- Randomly and ind. select $B_{1}, \ldots, B_{m} \leftarrow\{0,1\}^{b}$.

Important

- Set $O_{0}=\left(\right.$ write $\left(1, \mathrm{~B}_{1}\right), \ldots$, write $\left(m, \mathrm{~B}_{m}\right)$, $\left.\operatorname{read}(m)\right)$.
- Randomly select $j \in\left[p_{i}, p_{i}+r^{i}-1\right]$,
- Set $O_{1}=\left(\right.$ write $\left(1, B_{1}\right), \ldots$, write $\left.\left(m, B_{m}\right), \operatorname{read}(j)\right)$.
- Set $\mathcal{S}=\left(\left(p_{i}, 0\right),\left(p_{i}+r^{i}, 0\right),(m+1,1)\right)$.
- Return $\left(O_{0}, O_{1}, S\right)$.
- $\left(p_{i}, 0\right)$: snapshot of server memory before epoch i
- ($p_{i}+r^{i}, 0$): snapshot of server memory after epoch i
- ($m+1,1$): snapshot before read and transcript of read operation

A (3, 1)-snapshot adversary - Part 1

- U_{i} memory locations overwritten during epoch i
- by comparing the initial and final snapshot of epoch i
- V_{i} memory locations overwritten since epoch i
- by comparing the final snapshot of epoch i with snapshot before the read
- W_{i} memory location overwritten during epoch i that have not been modified when the read starts
- $W_{i}=U_{i} \backslash V_{i}$
- Q_{j} cells from W_{i} read during read (j),
- $\left|Q_{j}\right| \approx b / w$
- \mathcal{A}^{1} returns 0 iff $\left|Q_{j}\right| \leq \rho \cdot b / w$

The coding argument

Suppose

$$
t_{w}=o(b / w \log (n b / c))
$$

then there exists $\rho>0$ such that, for most epochs i,

$$
\left|Q_{j}\right| \geq \rho \cdot b / w
$$

with probability $\geq 1 / 8$ for j in epoch i.

The coding argument

Suppose

$$
t_{w}=o(b / w \log (n b / c))
$$

then there exists $\rho>0$ such that, for most epochs i,

$$
\left|Q_{j}\right| \geq \rho \cdot b / w
$$

with probability $\geq 1 / 8$ for j in epoch i.

Suppose not.

The coding argument

Suppose

$$
t_{w}=o(b / w \log (n b / c))
$$

then there exists $\rho>0$ such that, for most epochs i,

$$
\left|Q_{j}\right| \geq \rho \cdot b / w
$$

with probability $\geq 1 / 8$ for j in epoch i.

Suppose not.

Then we can encode the $r^{i} \cdot b$ bits of epoch i using fewer bits.

The coding argument - I

A coding game

- S wants to send B^{i} to R
the r^{i} blocks from epoch i
- S and R share
B^{-i} (all except epoch i) randomness \mathcal{R} to execute DS.

$$
\mathcal{H}\left(\mathrm{B}^{i} \mid \mathcal{R}, \mathrm{B}^{-i}\right)=r^{i} \cdot b
$$

The coding argument - II

- S and R execute all epochs $>i$

$$
\text { write }\left(1, \mathrm{~B}_{1}\right), \ldots, \operatorname{write}\left(p_{i}-1, \mathrm{~B}_{p_{i}-1}\right)
$$

The coding argument

- S executes epoch i

$$
\operatorname{write}\left(p_{i}, \mathrm{~B}_{p_{i}}\right), \ldots, \operatorname{write}\left(p_{i}+r^{i}-1, \mathrm{~B}_{p_{i}+r^{i}-1}\right)
$$

- Note: R cannot execute epoch i

The brown cells are in U_{i} Eroding

The coding argument

- S and R execute epochs $<i$
- R needs some help
\star client memory: chits.
- For $j=p_{i-1}, \ldots, m$
- execute write $\left(j, B_{j}\right)$ touching T_{j}
- R needs $U_{i} \cap T_{j}$ (cell location and content)
write $\left(J_{1} B_{3}\right)$

The coding argument

- c bits + set $Y_{i}:=U_{i} \cap\left(T_{p_{i}+r_{i}} \cup \cdots \cup T_{m}\right)$

期 U_{i}
modified during Epoch i

The coding argument

\mathbb{S} memory state after write $\left(m, \mathrm{~B}_{m}\right)$

- For $j=p_{i}, \ldots, p_{i}+r^{i}-1$
- S and R execute read (j) starting from \mathbb{S}
- R needs $Q_{j}:=W_{i} \cap T_{j}^{m}$
- if read errs or $Q_{j}>\rho b / w$
$\star B_{j}$ is added to encoding
- else
$\star Q_{j}$ is added to encoding

Length of encoding

Length depends on

- Set Y_{i}
- for most epochs $i, \mathbb{E}\left[\left|Y_{i}\right|\right] \leq r^{i-1} b / w$
- Set Q_{j}
- By assumption $\left|Q_{j}\right|<\rho \cdot b / w$ with prob $\geq 7 / 8$

Length of encoding

Length depends on

- Set Y_{i}
- for most epochs $i, \mathbb{E}\left[\left|Y_{i}\right|\right] \leq r^{i-1} b / w$
- Set Q_{j}
- By assumption $\left|Q_{j}\right|<\rho \cdot b / w$ with prob $\geq 7 / 8$

Encoding is too small

Getting there...

$$
t_{w}=o(b / w \log (n b / c))
$$

implies that, for most epochs i,

$$
\left|Q_{j}\right| \geq \rho \cdot b / w
$$

with probability $\geq 1 / 8$ for j in epoch i. from epoch i.

Getting there...

$$
t_{w}=o(b / w \log (n b / c))
$$

implies that, for most epochs i,
\mathcal{A} outputs 1 with probability $\geq 1 / 8$ when reading j from epoch i.

Getting there...

$$
t_{w}=o(b / w \log (n b / c))
$$

implies that, for most epochs i,
\mathcal{A} outputs 1 with probability $\geq 1 / 8$ when reading j from epoch i.
If $\epsilon=1 / 16$ then \mathcal{A} outputs 1 with probability $\geq 1 / 16$ when reading m

Getting there...

$$
t_{w}=o(b / w \log (n b / c))
$$

implies that, for most epochs i,
\mathcal{A} outputs 1 with probability $\geq 1 / 8$ when reading j from epoch i.
If $\epsilon=1 / 16$ then \mathcal{A} outputs 1 with probability $\geq 1 / 16$ when reading m
$\operatorname{read}(m)$ must touch $\geq \rho \cdot b / w$ cells from epoch i

Getting there...

$$
t_{w}=o(b / w \log (n b / c))
$$

implies that, for most epochs i,
\mathcal{A} outputs 1 with probability $\geq 1 / 8$ when reading j from epoch i.
If $\epsilon=1 / 16$ then \mathcal{A} outputs 1 with probability $\geq 1 / 16$ when reading m
$\operatorname{read}(m)$ must touch $\geq \rho \cdot b / w$ cells from epoch i

$$
\Omega(b / w \cdot \log n b / c)
$$

Wrapping up

Now...
If writes are fast

$$
t_{w}=o(b / w \log (n b / c))
$$

then $\operatorname{read}(j)$ in epoch i has $Q_{j}=\Omega(b / w)$ with prob at least $1 / 8$.

Wrapping up

Now...
If writes are fast

$$
t_{w}=o(b / w \log (n b / c))
$$

then $\operatorname{read}(j)$ in epoch i has $Q_{j}=\Omega(b / w)$ with prob at least $1 / 8$.

Reading 1

Must touch from each large epoch $O(b / w)$ cells otherwise we lose security.

$$
\Omega(b / w \cdot \log (n b / c))
$$

