
Limits of Breach-Resistant and Snapshot-Oblivious
RAMs

Still Ω(b/w · log(nb/c))

Giuseppe Persiano

Università di Salerno and Google LLC

ESSA 3 in Bertinoro

Joint work with Kevin Yeo (Google LLC and Columbia U.)
Accepted to CRYPTO 23

Giuseppe Persiano (S+G) ESSA 3 1 / 27

RAMS

Giuseppe Persiano (S+G) ESSA 3 2 / 27

RAMS

Giuseppe Persiano (S+G) ESSA 3 2 / 27

RAMS

Server memory words of length w < b

Giuseppe Persiano (S+G) ESSA 3 2 / 27

Oblivious RAMS

Hiding the access pattern to the RAM from the server

Upper bounds

Goldreich Ostrovsky – Late 80’s early 90’
I Slowdown O(log3 n)

....

Patel Persiano Raykova Yeo – 2018
I Slowdown O(log n log log n)

Asharov Komogordsky Lin Peserico Shi – 2018
I Slowdown O(log n)

Lower bounds

Larsen Nielsen – 2018
I Slowdown Ω(log n)

It holds also for Differential Privacy, some leakage

Giuseppe Persiano (S+G) ESSA 3 3 / 27

Oblivious RAMS

Hiding the access pattern to the RAM from the server

Upper bounds

Goldreich Ostrovsky – Late 80’s early 90’
I Slowdown O(log3 n)

....

Patel Persiano Raykova Yeo – 2018
I Slowdown O(log n log log n)

Asharov Komogordsky Lin Peserico Shi – 2018
I Slowdown O(log n)

Lower bounds

Larsen Nielsen – 2018
I Slowdown Ω(log n)

It holds also for Differential Privacy, some leakage

Giuseppe Persiano (S+G) ESSA 3 3 / 27

The snapshot adversary

the Server is the adversary

Snapshot Adversary

Du, Genkin, Grubbs, 2022

The adversary gets control of the Server for L consecutive operations
I Slowdown O(log L)

What if the adversary is active for more than one window?

Giuseppe Persiano (S+G) ESSA 3 4 / 27

The snapshot adversary

the Server is the adversary

Snapshot Adversary

Du, Genkin, Grubbs, 2022

The adversary gets control of the Server for L consecutive operations
I Slowdown O(log L)

What if the adversary is active for more than one window?

Giuseppe Persiano (S+G) ESSA 3 4 / 27

Snapshot Resistant Stacks

read – write

Giuseppe Persiano (S+G) ESSA 3 5 / 27

Snapshot Resistant Stacks

push – pop

Giuseppe Persiano (S+G) ESSA 3 5 / 27

Snapshot Resistant Stacks

push – pop

want to hide sequence of operations
I hide if push or pop
I hide input to push

Giuseppe Persiano (S+G) ESSA 3 5 / 27

Snapshot Resistant Stacks

push – pop

want to hide sequence of operations
I hide if push or pop
I hide input to push

hiding from whom
I Adversary that can see S memory snapshots
I Adversary that can see T operations transcripts

Giuseppe Persiano (S+G) ESSA 3 5 / 27

(∞, 0)-snapshot secure stacks
Adversary gets snapshots of memory after all operations and no transcript

S =∞ T = 0

2

24,0

12

pushle)
Pushlz)
Pushil

<nte 3

top t2

Giuseppe Persiano (S+G) ESSA 3 6 / 27

(∞, 0)-snapshot secure stacks
Adversary gets snapshots of memory after all operations and no transcript

S =∞ T = 0

24,0

pushlie)
Pushlza)
Pushlirl

<nte 3

top 42

Giuseppe Persiano (S+G) ESSA 3 6 / 27

(∞, 0)-snapshot secure stacks
Adversary gets snapshots of memory after all operations and no transcript

S =∞ T = 0

3
2

24,0

12

pushle)
Pushlza)
Pushlil
Popl)|7

cnt-9t 4
top 1

cliant mawm Ory
Giuseppe Persiano (S+G) ESSA 3 6 / 27

Snapshot Secure Stacks

Init()
I randomly choose encryption key K
I set cnt = 0 and top = −1.

Push(v)
I upload Enc(K , (v , top)) to location cnt
I set top← cnt
I set cnt← cnt + 1

Pop()
I download pair (v , t) from location top
I upload a dummy encryption to location cnt
I set top← t
I set cnt← cnt + 1
I return v

Giuseppe Persiano (S+G) ESSA 3 7 / 27

Snapshot Security

Snapshots:
Only difference between operation i and operation i + 1 in location i

independent from history of ops

Transcripts:
Client reaches for the current top

Gives information about number of push ops vs number of pop ops

randomly select a PRP F and write new pair at F (cnt)

Giuseppe Persiano (S+G) ESSA 3 8 / 27

Snapshot Security

Snapshots:
Only difference between operation i and operation i + 1 in location i

independent from history of ops

Transcripts:
Client reaches for the current top

Gives information about number of push ops vs number of pop ops

randomly select a PRP F and write new pair at F (cnt)

Giuseppe Persiano (S+G) ESSA 3 8 / 27

Snapshot Security

Snapshots:
Only difference between operation i and operation i + 1 in location i

independent from history of ops

Transcripts:
Client reaches for the current top

Gives information about number of push ops vs number of pop ops

randomly select a PRP F and write new pair at F (cnt)

Giuseppe Persiano (S+G) ESSA 3 8 / 27

Snapshot Security

Snapshots:
Only difference between operation i and operation i + 1 in location i

independent from history of ops

Transcripts:
Client reaches for the current top

Gives information about number of push ops vs number of pop ops

randomly select a PRP F and write new pair at F (cnt)

Giuseppe Persiano (S+G) ESSA 3 8 / 27

Snapshot Security

Snapshots:
Only difference between operation i and operation i + 1 in location i

independent from history of ops

Transcripts:
Client reaches for the current top

Gives information about number of push ops vs number of pop ops

randomly select a PRP F and write new pair at F (cnt)

Giuseppe Persiano (S+G) ESSA 3 8 / 27

(∞, 1)-snapshot secure stacks
A gets snapshots of memory after every operations and transcript for one.

Snapshot Secure Stacks

Init()
I randomly choose seed S
I randomly choose encryption key K
I set cnt = 0 and top = −1.

Push(v)
I download from location F (S , top) and discard
I upload Enc(K , (v , top)) to location F (S , cnt)
I top← cnt
I cnt← cnt + 1

Pop()
I download pair (v , t) from location F (S , top)
I upload dummy encryption at location F (S , cnt)
I set top← t
I set cnt← cnt + 1
I return v

Giuseppe Persiano (S+G) ESSA 3 9 / 27

(∞, 1)-snapshot secure stacks
A gets snapshots of memory after every operations and transcript for one.

Snapshot Secure Stacks

Init()
I randomly choose seed S
I randomly choose encryption key K
I set cnt = 0 and top = −1.

Push(v)
I download from location F (S , top) and discard
I upload Enc(K , (v , top)) to location F (S , cnt)
I top← cnt
I cnt← cnt + 1

Pop()
I download pair (v , t) from location F (S , top)
I upload dummy encryption at location F (S , cnt)
I set top← t
I set cnt← cnt + 1
I return v

Giuseppe Persiano (S+G) ESSA 3 9 / 27

This looks very promising

Constant slowdown against snapshot adversary
I for the same price I can throw in one transcript of your choice

For persistent adversaries, stack is as hard as ORAM
I Oblivious stack requires

Ω(b/w)log(nb/c)

Riko Jacob, Kasper Green Larsen, Jesper Buus Nielsen. SODA 2019.

Actually, not! for ORAM is still

Ω(b/w)log(nb/c)

Sorry

Giuseppe Persiano (S+G) ESSA 3 10 / 27

This looks very promising

Constant slowdown against snapshot adversary
I for the same price I can throw in one transcript of your choice

For persistent adversaries, stack is as hard as ORAM
I Oblivious stack requires

Ω(b/w)log(nb/c)

Riko Jacob, Kasper Green Larsen, Jesper Buus Nielsen. SODA 2019.

Actually, not! for ORAM is still

Ω(b/w)log(nb/c)

Sorry

Giuseppe Persiano (S+G) ESSA 3 10 / 27

This looks very promising

Constant slowdown against snapshot adversary
I for the same price I can throw in one transcript of your choice

For persistent adversaries, stack is as hard as ORAM
I Oblivious stack requires

Ω(b/w)log(nb/c)

Riko Jacob, Kasper Green Larsen, Jesper Buus Nielsen. SODA 2019.

Actually, not! for ORAM is still

Ω(b/w)log(nb/c)

Sorry

Giuseppe Persiano (S+G) ESSA 3 10 / 27

The snapshot adversary

Snapshot window (t, `)

A snapshot window of length ` starting at time t.

The adversary receives
I snapshot of server memory content before operation t has been

executed
I transcript of server’s operations for the following ` operations that take

place at times t, t + 1, . . . , t + `− 1.

For ` = 0, only memory content before operation t.

A (S , L)-snapshot adversary

Specifies a sequence of snaspshot windows S = ((t1, `1), . . . , (ts , `s)) such
that

s ≤ S , at most S windows,
I at most S snapshots∑
`i ≤ L, for a total duration of at most L operations
I at most L transcripts

Giuseppe Persiano (S+G) ESSA 3 11 / 27

The Lower Bound

Theorem

For any 0 ≤ ε ≤ 1/16, let DS be a (3, 1, ε)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Ω(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time tw and expected amortized read time tr with failure probability
at most 1/3, then

tr + tw = Ω (b/w · log(nb/c)) .

Giuseppe Persiano (S+G) ESSA 3 12 / 27

The Lower Bound

Theorem

For any 0 ≤ ε ≤ 1/16, let DS be a (3, 1, ε)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Ω(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time tw and expected amortized read time tr with failure probability
at most 1/3, then

tr + tw = Ω (b/w · log(nb/c)) .

n logical blocks of b bits

Giuseppe Persiano (S+G) ESSA 3 12 / 27

The Lower Bound

Theorem

For any 0 ≤ ε ≤ 1/16, let DS be a (3, 1, ε)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Ω(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time tw and expected amortized read time tr with failure probability
at most 1/3, then

tr + tw = Ω (b/w · log(nb/c)) .

w < b is size physical words

Giuseppe Persiano (S+G) ESSA 3 12 / 27

The Lower Bound

Theorem

For any 0 ≤ ε ≤ 1/16, let DS be a (3, 1, ε)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Ω(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time tw and expected amortized read time tr with failure probability
at most 1/3, then

tr + tw = Ω (b/w · log(nb/c)) .

Client has c bits of local memory

Giuseppe Persiano (S+G) ESSA 3 12 / 27

The Lower Bound

Theorem

For any 0 ≤ ε ≤ 1/16, let DS be a (3, 1,ε)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Ω(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time tw and expected amortized read time tr with failure probability
at most 1/3, then

tr + tw = Ω (b/w · log(nb/c)) .

Adversary receives at most 3 memory snapshots and 1 operation transcript

Giuseppe Persiano (S+G) ESSA 3 12 / 27

The Lower Bound

Theorem

For any 0 ≤ ε ≤ 1/16, let DS be a (3, 1, ε)-snapshot private RAM data
structure for n entries each of b bits implemented over w = Ω(log n) bits
using client storage of c bits in the cell probe model. If DS has amortized
write time tw and expected amortized read time tr with failure probability
at most 1/3, then

tr + tw = Ω (b/w · log(nb/c)) .

ε is the adversary’s advantage in the security game

Giuseppe Persiano (S+G) ESSA 3 12 / 27

The security game

Exptn,βDS,A
Receive (O0,O1, ((t1, `1), . . . , (ts , `s))) from A0(1n).

Set L ← ∅, DS← (R1, . . . ,Rn), i ← 1.

While i ≤ |Oβ|:
I If i = tj for some 1 ≤ j ≤ s:

F Set L ← L || (memory,M).
F For k = 1, . . . , `j :

Execute DSLRead,LWrite(Ob[i]) and set i ← i + 1.

I Else:
Execute DSRead,Write(Ob[i]) and set i ← i + 1.

Return A1(L).

∣∣∣Pr[Exptn,0DS,A = 1]− Pr[Exptn,1DS,A = 1]
∣∣∣ ≤ ε,

for all PPT A that are (S , L)-snapshot adversaries.

Giuseppe Persiano (S+G) ESSA 3 13 / 27

The Epoch structure

The sequence and the epochs

n logical indices

m← {n/2 + 1, . . . , n}
m writes of random b-bit blocks at indices 1, 2, . . . ,m

followed by one read.

tim
e

rop
era

ion
s

Iop
era

tion

L

Epoc
h Ech
o

Giuseppe Persiano (S+G) ESSA 3 14 / 27

A (3, 1)-snapshot adversary – Intuition
Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i

I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (S+G) ESSA 3 15 / 27

A (3, 1)-snapshot adversary – Intuition
Two sequences of operations O0,O1

I Both write random blocks to the first m indices

I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i

I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (S+G) ESSA 3 15 / 27

A (3, 1)-snapshot adversary – Intuition
Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1

I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i

I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (S+G) ESSA 3 15 / 27

A (3, 1)-snapshot adversary – Intuition
Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i

I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (S+G) ESSA 3 15 / 27

A (3, 1)-snapshot adversary – Intuition
Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i

I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (S+G) ESSA 3 15 / 27

A (3, 1)-snapshot adversary – Intuition
Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i
I epochs preceding epoch i are independent

I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (S+G) ESSA 3 15 / 27

A (3, 1)-snapshot adversary – Intuition
Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i
I epochs preceding epoch i are independent
I epochs following epoch i are not large enough

I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (S+G) ESSA 3 15 / 27

A (3, 1)-snapshot adversary – Intuition
Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i
I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (S+G) ESSA 3 15 / 27

A (3, 1)-snapshot adversary – Intuition
Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i
I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (S+G) ESSA 3 15 / 27

A (3, 1)-snapshot adversary – Intuition
Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i
I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (S+G) ESSA 3 15 / 27

A (3, 1)-snapshot adversary – Intuition
Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i
I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (S+G) ESSA 3 15 / 27

A (3, 1)-snapshot adversary – Intuition
Two sequences of operations O0,O1

I Both write random blocks to the first m indices
I O0 reads index 1
I O1 reads a randomly selected index j written in the i-th epoch

correctness of O1

touch about b/w cells updated in epoch i
I epochs preceding epoch i are independent
I epochs following epoch i are not large enough
I pick i so that client memory is too small

correctness of O0

read of O0 does not depend on epoch i

security
but if it does not, then security fails

final step
this holds for all epochs except for those that have fewer than c/b
writes.

we have a lower bound Ω(b/w · log(nb/c))

Giuseppe Persiano (S+G) ESSA 3 15 / 27

A (3, 1)-snapshot adversary – Part 0

Ai
0(1

n)

Randomly select integer m from [n/2, n].

Randomly and ind. select B1, . . . ,Bm ← {0, 1}b.

Set O0 = (write(1,B1), . . . ,write(m,Bm), read(m)).

Randomly select j ∈ [pi , pi + r i − 1],

Set O1 = (write(1,B1), . . . ,write(m,Bm), read(j)).

Set S = ((pi , 0), (pi + r i , 0), (m + 1, 1)).

Return (O0,O1, S).

(pi , 0): snapshot of server memory before epoch i

(pi + r i , 0): snapshot of server memory after epoch i

(m + 1, 1): snapshot before read and transcript of read operation

Giuseppe Persiano (S+G) ESSA 3 16 / 27

A (3, 1)-snapshot adversary – Part 0

Ai
0(1

n)

Randomly select integer m from [n/2, n].

Randomly and ind. select B1, . . . ,Bm ← {0, 1}b.

Set O0 = (write(1,B1), . . . ,write(m,Bm), read(m)).

Randomly select j ∈ [pi , pi + r i − 1],

Set O1 = (write(1,B1), . . . ,write(m,Bm), read(j)).

Set S = ((pi , 0), (pi + r i , 0), (m + 1, 1)).

Return (O0,O1, S).

(pi , 0): snapshot of server memory before epoch i

(pi + r i , 0): snapshot of server memory after epoch i

(m + 1, 1): snapshot before read and transcript of read operation

Giuseppe Persiano (S+G) ESSA 3 16 / 27

A (3, 1)-snapshot adversary – Part 0

Ai
0(1

n)

Randomly select integer m from [n/2, n].

Randomly and ind. select B1, . . . ,Bm ← {0, 1}b.

Set O0 = (write(1,B1), . . . ,write(m,Bm), read(m)).

Randomly select j ∈ [pi , pi + r i − 1],

Set O1 = (write(1,B1), . . . ,write(m,Bm), read(j)).

Set S = ((pi , 0), (pi + r i , 0), (m + 1, 1)).

Return (O0,O1, S).

(pi , 0): snapshot of server memory before epoch i

(pi + r i , 0): snapshot of server memory after epoch i

(m + 1, 1): snapshot before read and transcript of read operation

Giuseppe Persiano (S+G) ESSA 3 16 / 27

A (3, 1)-snapshot adversary – Part 0

Ai
0(1

n)

Randomly select integer m from [n/2, n].

Randomly and ind. select B1, . . . ,Bm ← {0, 1}b.

Set O0 = (write(1,B1), . . . ,write(m,Bm), read(m)).

Randomly select j ∈ [pi , pi + r i − 1],

Set O1 = (write(1,B1), . . . ,write(m,Bm), read(j)).

Set S = ((pi , 0), (pi + r i , 0), (m + 1, 1)).

Return (O0,O1, S).

(pi , 0): snapshot of server memory before epoch i

(pi + r i , 0): snapshot of server memory after epoch i

(m + 1, 1): snapshot before read and transcript of read operation

Giuseppe Persiano (S+G) ESSA 3 16 / 27

A (3, 1)-snapshot adversary – Part 0

Ai
0(1

n)

Randomly select integer m from [n/2, n].

Randomly and ind. select B1, . . . ,Bm ← {0, 1}b. Important

Set O0 = (write(1,B1), . . . ,write(m,Bm), read(m)).

Randomly select j ∈ [pi , pi + r i − 1],

Set O1 = (write(1,B1), . . . ,write(m,Bm), read(j)).

Set S = ((pi , 0), (pi + r i , 0), (m + 1, 1)).

Return (O0,O1, S).

(pi , 0): snapshot of server memory before epoch i

(pi + r i , 0): snapshot of server memory after epoch i

(m + 1, 1): snapshot before read and transcript of read operation

Giuseppe Persiano (S+G) ESSA 3 16 / 27

A (3, 1)-snapshot adversary – Part 1

Ui memory locations overwritten during epoch i
I by comparing the initial and final snapshot of epoch i

Vi memory locations overwritten since epoch i
I by comparing the final snapshot of epoch i with snapshot before the

read

Wi memory location overwritten during epoch i that have not been
modified when the read starts

I Wi = Ui \ Vi

Qj cells from Wi read during read(j),

|Qj | ≈ b/w
I A1 returns 0 iff |Qj | ≤ ρ · b/w

Giuseppe Persiano (S+G) ESSA 3 17 / 27

The coding argument

Suppose
tw = o(b/w log(nb/c))

then there exists ρ > 0 such that, for most epochs i ,

|Qj | ≥ ρ · b/w

with probability ≥ 1/8 for j in epoch i .

Suppose not.
Then we can encode the r i · b bits of epoch i using fewer bits.

Giuseppe Persiano (S+G) ESSA 3 18 / 27

The coding argument

Suppose
tw = o(b/w log(nb/c))

then there exists ρ > 0 such that, for most epochs i ,

|Qj | ≥ ρ · b/w

with probability ≥ 1/8 for j in epoch i .

Suppose not.

Then we can encode the r i · b bits of epoch i using fewer bits.

Giuseppe Persiano (S+G) ESSA 3 18 / 27

The coding argument

Suppose
tw = o(b/w log(nb/c))

then there exists ρ > 0 such that, for most epochs i ,

|Qj | ≥ ρ · b/w

with probability ≥ 1/8 for j in epoch i .

Suppose not.
Then we can encode the r i · b bits of epoch i using fewer bits.

Giuseppe Persiano (S+G) ESSA 3 18 / 27

The coding argument - I

A coding game

S wants to send Bi to R
I the r i blocks from epoch i

S and R share
I B−i (all except epoch i)
I randomness R to execute DS.

H(Bi |R,B−i) = r i · b.

Giuseppe Persiano (S+G) ESSA 3 19 / 27

The coding argument - II

S and R execute all epochs > i

write(1,B1), . . . ,write(pi − 1,Bpi−1)

12

Giuseppe Persiano (S+G) ESSA 3 20 / 27

The coding argument
S executes epoch i

write(pi ,Bpi), . . . ,write(pi + r i − 1,Bpi+r i−1)

Note: R cannot execute epoch i

123

The brown cells are in U;

sat of memar y calls
updated durine,

Epoch

Teliont
memory

Giuseppe Persiano (S+G) ESSA 3 21 / 27

The coding argument
S and R execute epochs < i

I R needs some help
F client memory: c bits.

For j = pi−1, . . . ,m
I execute write(j ,Bj) touching Tj

I R needs Ui ∩ Tj (cell location and content)

1 2 3
writels, B,)

Telioyt
memory

Giuseppe Persiano (S+G) ESSA 3 22 / 27

The coding argument
c bits + set Yi := Ui ∩ (Tpi+ri ∪ · · · ∪ Tm)

during
Epoch

Ercbs

M

Giuseppe Persiano (S+G) ESSA 3 23 / 27

The coding argument

S memory state after write(m,Bm)

For j = pi , . . . , pi + r i − 1
I S and R execute read(j) starting from S
I R needs Qj := Wi ∩ Tm

j
I if read errs or Qj > ρb/w

F Bj is added to encoding

I else
F Qj is added to encoding

Giuseppe Persiano (S+G) ESSA 3 24 / 27

Length of encoding

Length depends on

Set Yi

I for most epochs i , E[|Yi |] ≤ r i−1b/w

Set Qj

I By assumption |Qj | < ρ · b/w with prob ≥ 7/8

Encoding is too small

Giuseppe Persiano (S+G) ESSA 3 25 / 27

Length of encoding

Length depends on

Set Yi

I for most epochs i , E[|Yi |] ≤ r i−1b/w

Set Qj

I By assumption |Qj | < ρ · b/w with prob ≥ 7/8

Encoding is too small

Giuseppe Persiano (S+G) ESSA 3 25 / 27

Getting there...

tw = o(b/w log(nb/c))

implies that, for most epochs i ,

|Qj | ≥ ρ · b/w

with probability ≥ 1/8 for j in epoch i . from epoch i .

Giuseppe Persiano (S+G) ESSA 3 26 / 27

Getting there...

tw = o(b/w log(nb/c))

implies that, for most epochs i ,

A outputs 1 with probability ≥ 1/8 when reading j from epoch i .

Giuseppe Persiano (S+G) ESSA 3 26 / 27

Getting there...

tw = o(b/w log(nb/c))

implies that, for most epochs i ,

A outputs 1 with probability ≥ 1/8 when reading j from epoch i .

If ε = 1/16 then A outputs 1 with probability ≥ 1/16 when reading m

Giuseppe Persiano (S+G) ESSA 3 26 / 27

Getting there...

tw = o(b/w log(nb/c))

implies that, for most epochs i ,

A outputs 1 with probability ≥ 1/8 when reading j from epoch i .

If ε = 1/16 then A outputs 1 with probability ≥ 1/16 when reading m

read(m) must touch ≥ ρ · b/w cells from epoch i

Giuseppe Persiano (S+G) ESSA 3 26 / 27

Getting there...

tw = o(b/w log(nb/c))

implies that, for most epochs i ,

A outputs 1 with probability ≥ 1/8 when reading j from epoch i .

If ε = 1/16 then A outputs 1 with probability ≥ 1/16 when reading m

read(m) must touch ≥ ρ · b/w cells from epoch i

Ω(b/w · log nb/c)

Giuseppe Persiano (S+G) ESSA 3 26 / 27

Wrapping up

Now...

If writes are fast
tw = o(b/w log(nb/c))

then read(j) in epoch i has Qj = Ω(b/w) with prob at least 1/8.

Reading 1

Must touch from each large epoch O(b/w) cells otherwise we lose security.

Ω(b/w · log(nb/c))

Giuseppe Persiano (S+G) ESSA 3 27 / 27

Wrapping up

Now...

If writes are fast
tw = o(b/w log(nb/c))

then read(j) in epoch i has Qj = Ω(b/w) with prob at least 1/8.

Reading 1

Must touch from each large epoch O(b/w) cells otherwise we lose security.

Ω(b/w · log(nb/c))

Giuseppe Persiano (S+G) ESSA 3 27 / 27

