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Start from the beginning
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Definition of Secure Encryption
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The fine print
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Indeed WLOG:
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Incompressibility

Fact of life

Encryption necessarily leaks an upper bound on the length of the
plaintext

A direct consequence of Shannon/Kolmogoroff
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Structured Encryption Chase-Kamara 2010

Data is often organized in Data Structures

For efficient retrieval

Storage is outsourced to untrusted server

I honest but very curious
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V1,1 V1,2 V1,3

V2,1

Vn,1 Vn,2

Supported operations

Init((Li ,Vals(Li ))i )

Get(L)→ Vals(L)

Inverted index

Labels are keywords

Values are documents
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Plaintext Multi-Maps

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

. . . . . .

Ln Vn,1 Vn,2
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Plaintext Multi-Maps with Evil Cloud Manager

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

. . . . . .

Ln Vn,1 Vn,2

Giuseppe Persiano (UNISA) August 2020 9 / 36



Plaintext Multi-Maps with Evil Cloud Manager

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

. . . . . .

Ln Vn,1 Vn,2

L1

Giuseppe Persiano (UNISA) August 2020 9 / 36



Plaintext Multi-Maps with Evil Cloud Manager

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

. . . . . .

Ln Vn,1 Vn,2

What???
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Plaintext Multi-Maps with Honest-but-Curious Cloud
Manager

User Cloud Manager
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Plaintext Multi-Maps with Honest-but-Curious Cloud
Manager

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

. . . . . .

Ln Vn,1 Vn,2

V1,1 V1,2 V1,3

V1,2 = Vn,1
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The “Hash-and-Encrypt Approach”

Kh,K e

H(Kh, L1) [V1,1 ]
Ke [V1,2 ]

Ke [V1,3 ]
Ke

H(Kh, L2) [V2,1 ]
Ke

. . . . . .

H(Kh, Ln) [Vn,1 ]
Ke [Vn,2 ]

Ke
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The Leakage: what the Cloud Manager learns

N, number of ciphertexts
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The Leakage: what the Cloud Manager learns

Li1 , Li2 , . . . , Liq

N, number of ciphertexts

H(Kh, Li1), . . . ,H(Kh, Liq)
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Padding to maximum length
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The Simulator

I = (Q,Data)
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The Simulator

I = (Q,Data)

(L1, (V1,1, . . . ,V1,l1), . . . , (Ln, (Vn,1, . . . ,Vn,ln)))
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The Simulator

I = (Q,Data)

Li1 , . . . , Liq

Rep = (1, 2, 1, 2, 5, 6, 1, 8, 6, . . . , ) H(Kh, Li1), . . . ,H(Kh, Liq))
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It seems we are done

Implementation of Encrypted Multi-Map

1 That leaks
I size of the multi-map
I query repetition pattern

2 it is volume hiding

3 security under existence of one-way functions

Query time is Θ(`max) Very good!!!

Storage is Θ(n · `max) Very bad!!!
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Densest Subgraph Transform

[Kamara-Moataz ’19]

DST
1 We have n bins

2 For each key Li assign the `max elements to (pseudo)-randomly
chosen bins

3 Pad all bins to maximum size Θ(log n)

4 To retrieve the values for label Li retrieve the L bins

Query time: Θ(L · log n)
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Concentrated Multi-Maps [K-M ’19]

(µ, τ)-Multi Maps has a set of µ keys that share τ values

Storage is saved by not repeating shared values

If values are distributed according to Zipf’s law, then except with
negligible probability storage is Θ(n)

Security based on hardness of planted densest subgraph
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Still unhappy...

Desiderata
1 Θ(n) server storage in the worst case

2 Θ(`max) communication in the worst case

3 Standard complexity assumptions
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Blueprint for Volume Hiding Multi-Maps

Dream Data Structure

for each label L and integer j ,
there exists a set Mem(L, j) of constant number of memory locations
where j-th value of Vals(L) can be found;

the location in Mem(L, j) are pseudorandom

given N items, almost all can be stored using Θ(N) memory
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Encrypted Multi-Maps in Dreamland

1 Init for Data = ((L1,Vals(L1)), . . . , (Ln,Vals(Ln)))

I randomly select encryption key K e

I for i = 1, . . . , n
for j = 1, . . . , `i

store [Li ,Vi,j ]K e in one of the locations of Mem(Li , j)
I keep the few that did not fit in local stash

2 Retrieve values for label L

I for j = 1, . . . , `max:

F ask for all memory cells in Mem(L, j),
F decrypt all ciphertexts received
F keep the ones (L, ?)
F look for the missing ones in the stash

Server memory: Θ(N), N = `1 + . . . , `n
Query bandwidth: Θ(`max)
Client memory: few values
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Enter Cuckoo Hashing
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The Cuckoo Graph for n items
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Cuckoo Graph

take each component of the cuckoo graph

I edges correspond to items
I vertices correspond to memory slots

if it is a tree or if it has only one cycle

I number of edges ≤ number of vertices
I there is enough space to store each item in one of the two endpoints

if it is has more than only one cycle

I remove edges until we fall in the previous case
I removed items are stored in the stash

Theorem (Kirsch-Mitzenmacher-Wieder ’09)

The probability that s items are stored in the stash is O(n−s).
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Constructing the Cuckoo Hash Table

The construction of the components of the cuckoo graph and the
deletion of the extra edges can be performed with a sequence of
MapReduce operations

MapReduce can be performed obliviously

In practice (and in our experiments):

I try to insert x to X1 or X2

I if one is empty, we are done
I otherwise evict y from X1

I try to insert y to Y2

I if not successful after M steps, add x to stash

If M = Ω(log n) then resulting stash is very small and average
insertion time stays constant.
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Blueprint for Volume Hiding Multi-Maps – Revisited

Cuckoo Hashing

for each label L and integer j ,
there exists a set Mem(L, j) of constant number of memory locations
where j-th value of Vals(L) can be found;

the location in Mem(L, j) are pseudorandom

given N items, almost all can be stored using Θ(N) memory
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Encrypted Multi-Maps using Cuckoo Hashing

Algorithm Init

Data = ((L1,Vals(L1)), . . . , (Ln,Vals(Ln)))

1 randomly select seeds K1,K2 for PRF F

2 randomly select encryption key K e

3 for i = 1, . . . , n
I randomly select permutation Πi over [1, . . . , `max]
I for j = 1 to li

F Add edge labeled [Li ,Vi,j ]Ke between vertices F (K1, (L,Πi (j))) and
F (K2, (L,Πi (j)))

4 Construct T1 and T2 (stored remotely) and stash (stored locally)
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Encrypted Multi-Maps using Cuckoo Hashing

Algorithm Get

Retrieve values for label L

for j = 1, . . . , `max:

I ask for slot F (K1, (L, j)) in table T1 and slot F (K2, (L, j)) in table T2

decrypt all ciphertexts received

keep the ones (L, ?)

look for the missing ones in the stash
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Encrypted Multi-Maps using Cuckoo Hashing

1 Leakage
I N, total number of values
I L, maximum volume
I Rep, query repetition pattern

2 Storage
I Server: (2 + ε)N
I Client: practically constant

3 Communication
I Client to Server 2L indices
I Server to Client 2L ciphertexts

Security assuming One-Way Functions
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Always download maximum volume?

All previous schemes consider perfect volume-hiding privacy

This requires that all queries download ≥ `max entries

This very wasteful when there is a huge variation in the length of
tuples (e.g., Zipf’s law)

Question:
Can we obtain some meaningful privacy notion that allows for
downloading ≤ `max entries?
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(ε, δ)-Differentially Private Volume-Hiding Encrypted
Multi-Maps

Data1 and Data2 differ in the volume of one label Li

|l1i − l2i | = 1

then

Prob[View(Data1) ∈ S ] ≤ eε · Prob[View(Data2) ∈ S ] + δ

for all subsets S of views
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Cuckoo hashing with DP

To retrieve tuple for label L,

F (K1, L||1) F (K2, L||1)
F (K1, L||2) F (K2, L||2)
F (K1, L||3) F (K2, L||3)

. . . . . .
F (K1, L||`max) F (K2, L||`max)
F (K1, L||`max + T + ZL) F (K2, L||`max + T + ZL)
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Cuckoo hashing with DP

To retrieve tuple for label L,

F (K1, L||1) F (K2, L||1)
F (K1, L||2) F (K2, L||2)
F (K1, L||3) F (K2, L||3)

. . . . . .
F (K1, L||`max + T + ZL) F (K2, L||`max + T + ZL)
F (K1, L||`max + T + ZL) F (K2, L||`max + T + ZL)

ZL is the noise from Laplacian(O(1/ε)) dist.

ZL could be negative

Make sure T ≥ |ZL|

|ZL| > log n with negligible probability
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Cuckoo hashing with DP

Data is Sanitized

ZL is distributed according to LaplacianO(1/ε)

Sampled once and stored over the server

We need a dictionary to store it

No volume leakage
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Experiments

Volume Hiding with dPRF vs DST

Cuckoo Hash with m = 1.3n
Give up insertion after 5 log n tries

Less Server Storage

I For N ≈ 4Million values
348MB vs 384MB

Query Overhead: 2 ciphertexts per value (64 bytes)

I 675 bytes for N ≈ 64000 values (10x improvement)
I 1008 bytes for N ≈ 4Million values (16x improvement)

Client Storage

I less than 4 KB
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Differentially-Private Volume Hiding with dPRF vs DST

ε = 0.2

Lossy with probability 2−64

Number of values of a label follows Zipf’s distribution
Average length 8

To obtain 2−64, T = 5610,

I average download is 5618

Volume-Hiding forced to download max length ≈ 84000
15x improvement
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Experiments
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Thank You

ePrint: https://eprint.iacr.org/2019/1292

CCS ’19: https://doi.org/10.1145/3319535.3354213
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