
The Curse of the Length
The Case of Encrypted Multi-Maps

Giuseppe Persiano

Università di Salerno

August, 2020

Mitigating Leakage in Secure Cloud-Hosted Data Structures:
Volume-Hiding for Multi-Maps via Hashing
by Sarvar Patel, GP, Kevin Yeo, and Moti Yung
CCS ’19

Giuseppe Persiano (UNISA) August 2020 1 / 36

Start from the beginning

Giuseppe Persiano (UNISA) August 2020 2 / 36

Definition of Secure Encryption

Giuseppe Persiano (UNISA) August 2020 3 / 36

The fine print

Giuseppe Persiano (UNISA) August 2020 4 / 36

The fine print

Indeed WLOG:

Just pad each message in the message space to the maximum length

Giuseppe Persiano (UNISA) August 2020 4 / 36

The fine print

Indeed WLOG:

Just pad each message in the message space to the maximum length

Giuseppe Persiano (UNISA) August 2020 4 / 36

The fine print

Indeed WLOG:

Encryption necessarily leaks an upper bound on the length of the plaintext

Giuseppe Persiano (UNISA) August 2020 4 / 36

Incompressibility

Fact of life

Encryption necessarily leaks an upper bound on the length of the
plaintext

A direct consequence of Shannon/Kolmogoroff

Giuseppe Persiano (UNISA) August 2020 5 / 36

Structured Encryption Chase-Kamara 2010

Data is often organized in Data Structures

For efficient retrieval

Storage is outsourced to untrusted server

I honest but very curious

Giuseppe Persiano (UNISA) August 2020 6 / 36

Structured Encryption Chase-Kamara 2010

Data is often organized in Data Structures

For efficient retrieval

Storage is outsourced to untrusted server

I honest but very curious

Giuseppe Persiano (UNISA) August 2020 6 / 36

Structured Encryption Chase-Kamara 2010

Data is often organized in Data Structures

For efficient retrieval

Storage is outsourced to untrusted server

I honest but very curious

Giuseppe Persiano (UNISA) August 2020 6 / 36

Structured Encryption Chase-Kamara 2010

Data is often organized in Data Structures

For efficient retrieval

Storage is outsourced to untrusted server
I honest but very curious

Giuseppe Persiano (UNISA) August 2020 6 / 36

(Plaintext) Multi-Maps

L1

L2

. . .

Ln

Giuseppe Persiano (UNISA) August 2020 7 / 36

(Plaintext) Multi-Maps

L1

L2

. . .

Ln

n labels

Giuseppe Persiano (UNISA) August 2020 7 / 36

(Plaintext) Multi-Maps

L1

L2

. . .

Ln

Vals(L1)

Vals(L2)

. . .

Vals(Ln)

tuples of values

Giuseppe Persiano (UNISA) August 2020 7 / 36

(Plaintext) Multi-Maps

L1

L2

. . .

Ln

V1,1 V1,2 V1,3

V2,1

Vn,1 Vn,2

Giuseppe Persiano (UNISA) August 2020 7 / 36

(Plaintext) Multi-Maps

L1

L2

. . .

Ln

V1,1 V1,2 V1,3

V2,1

Vn,1 Vn,2

Vals(L1)

Giuseppe Persiano (UNISA) August 2020 7 / 36

(Plaintext) Multi-Maps

L1

L2

. . .

Ln

V1,1 V1,2 V1,3

V2,1

Vn,1 Vn,2

Vals(Ln)

Giuseppe Persiano (UNISA) August 2020 7 / 36

(Plaintext) Multi-Maps

L1

L2

. . .

Ln

V1,1 V1,2 V1,3

V2,1

Vn,1 Vn,2

Supported operations

Init((Li ,Vals(Li))i)

Get(L)→ Vals(L)

Giuseppe Persiano (UNISA) August 2020 7 / 36

(Plaintext) Multi-Maps

L1

L2

. . .

Ln

V1,1 V1,2 V1,3

V2,1

Vn,1 Vn,2

Supported operations

Init((Li ,Vals(Li))i)

Get(L)→ Vals(L)

Inverted index

Labels are keywords

Values are documents

Giuseppe Persiano (UNISA) August 2020 7 / 36

Plaintext Multi-Maps

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

Giuseppe Persiano (UNISA) August 2020 8 / 36

Plaintext Multi-Maps

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

L1

Giuseppe Persiano (UNISA) August 2020 8 / 36

Plaintext Multi-Maps

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

V1,1

Giuseppe Persiano (UNISA) August 2020 8 / 36

Plaintext Multi-Maps

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

V1,1

Giuseppe Persiano (UNISA) August 2020 8 / 36

Plaintext Multi-Maps

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

V1,1

V1,2

Giuseppe Persiano (UNISA) August 2020 8 / 36

Plaintext Multi-Maps

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

V1,1 V1,2

Giuseppe Persiano (UNISA) August 2020 8 / 36

Plaintext Multi-Maps

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

V1,1 V1,2

V1,3

Giuseppe Persiano (UNISA) August 2020 8 / 36

Plaintext Multi-Maps

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

V1,1 V1,2 V1,3

Giuseppe Persiano (UNISA) August 2020 8 / 36

Plaintext Multi-Maps with Evil Cloud Manager

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

Giuseppe Persiano (UNISA) August 2020 9 / 36

Plaintext Multi-Maps with Evil Cloud Manager

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

L1

Giuseppe Persiano (UNISA) August 2020 9 / 36

Plaintext Multi-Maps with Evil Cloud Manager

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

What???

Giuseppe Persiano (UNISA) August 2020 9 / 36

Plaintext Multi-Maps with Honest-but-Curious Cloud
Manager

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

Giuseppe Persiano (UNISA) August 2020 10 / 36

Plaintext Multi-Maps with Honest-but-Curious Cloud
Manager

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

L1

Giuseppe Persiano (UNISA) August 2020 10 / 36

Plaintext Multi-Maps with Honest-but-Curious Cloud
Manager

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

V1,1

Giuseppe Persiano (UNISA) August 2020 10 / 36

Plaintext Multi-Maps with Honest-but-Curious Cloud
Manager

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

V1,1

Giuseppe Persiano (UNISA) August 2020 10 / 36

Plaintext Multi-Maps with Honest-but-Curious Cloud
Manager

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

V1,1

V1,2

Giuseppe Persiano (UNISA) August 2020 10 / 36

Plaintext Multi-Maps with Honest-but-Curious Cloud
Manager

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

V1,1 V1,2

Giuseppe Persiano (UNISA) August 2020 10 / 36

Plaintext Multi-Maps with Honest-but-Curious Cloud
Manager

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

V1,1 V1,2

V1,3

Giuseppe Persiano (UNISA) August 2020 10 / 36

Plaintext Multi-Maps with Honest-but-Curious Cloud
Manager

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

V1,1 V1,2 V1,3

Giuseppe Persiano (UNISA) August 2020 10 / 36

Plaintext Multi-Maps with Honest-but-Curious Cloud
Manager

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

V1,1 V1,2 V1,3

Giuseppe Persiano (UNISA) August 2020 10 / 36

Plaintext Multi-Maps with Honest-but-Curious Cloud
Manager

User Cloud Manager

L1 V1,1 V1,2 V1,3

L2 V2,1

.

Ln Vn,1 Vn,2

V1,1 V1,2 V1,3

V1,2 = Vn,1

Giuseppe Persiano (UNISA) August 2020 10 / 36

The “Hash-and-Encrypt Approach”

Kh,K e

H(Kh, L1) [V1,1]
Ke [V1,2]

Ke [V1,3]
Ke

H(Kh, L2) [V2,1]
Ke

.

H(Kh, Ln) [Vn,1]
Ke [Vn,2]

Ke

Giuseppe Persiano (UNISA) August 2020 11 / 36

The “Hash-and-Encrypt Approach”

Kh,K e

H(Kh, L1) [V1,1]
Ke [V1,2]

Ke [V1,3]
Ke

H(Kh, L2) [V2,1]
Ke

.

H(Kh, Ln) [Vn,1]
Ke [Vn,2]

Ke

L1

Giuseppe Persiano (UNISA) August 2020 11 / 36

The “Hash-and-Encrypt Approach”

Kh,K e

H(Kh, L1) [V1,1]
Ke [V1,2]

Ke [V1,3]
Ke

H(Kh, L2) [V2,1]
Ke

.

H(Kh, Ln) [Vn,1]
Ke [Vn,2]

Ke

L1

H(Kh, L1)

Giuseppe Persiano (UNISA) August 2020 11 / 36

The “Hash-and-Encrypt Approach”

Kh,K e

H(Kh, L1) [V1,1]
Ke [V1,2]

Ke [V1,3]
Ke

H(Kh, L2) [V2,1]
Ke

.

H(Kh, Ln) [Vn,1]
Ke [Vn,2]

Ke

L1

[V1,1]
Ke

[V1,1]
Ke

Giuseppe Persiano (UNISA) August 2020 11 / 36

The “Hash-and-Encrypt Approach”

Kh,K e

H(Kh, L1) [V1,1]
Ke [V1,2]

Ke [V1,3]
Ke

H(Kh, L2) [V2,1]
Ke

.

H(Kh, Ln) [Vn,1]
Ke [Vn,2]

Ke

L1

V1,1

Giuseppe Persiano (UNISA) August 2020 11 / 36

The “Hash-and-Encrypt Approach”

Kh,K e

H(Kh, L1) [V1,1]
Ke [V1,2]

Ke [V1,3]
Ke

H(Kh, L2) [V2,1]
Ke

.

H(Kh, Ln) [Vn,1]
Ke [Vn,2]

Ke

L1

V1,1

[V1,2]
Ke

[V1,2]
Ke

Giuseppe Persiano (UNISA) August 2020 11 / 36

The “Hash-and-Encrypt Approach”

Kh,K e

H(Kh, L1) [V1,1]
Ke [V1,2]

Ke [V1,3]
Ke

H(Kh, L2) [V2,1]
Ke

.

H(Kh, Ln) [Vn,1]
Ke [Vn,2]

Ke

L1

V1,1

V1,2

Giuseppe Persiano (UNISA) August 2020 11 / 36

The “Hash-and-Encrypt Approach”

Kh,K e

H(Kh, L1) [V1,1]
Ke [V1,2]

Ke [V1,3]
Ke

H(Kh, L2) [V2,1]
Ke

.

H(Kh, Ln) [Vn,1]
Ke [Vn,2]

Ke

L1

V1,1

V1,2

[V1,3]
Ke

[V1,3]
Ke

Giuseppe Persiano (UNISA) August 2020 11 / 36

The “Hash-and-Encrypt Approach”

Kh,K e

H(Kh, L1) [V1,1]
Ke [V1,2]

Ke [V1,3]
Ke

H(Kh, L2) [V2,1]
Ke

.

H(Kh, Ln) [Vn,1]
Ke [Vn,2]

Ke

L1

V1,1

V1,2

V1,3

Giuseppe Persiano (UNISA) August 2020 11 / 36

The Leakage: what the Cloud Manager learns

N, number of ciphertexts

H(Kh, L1) [V1,1]
Ke [V1,2]

Ke [V1,3]
Ke

H(Kh, L2) [V2,1]
Ke

.

H(Kh, Ln) [Vn,1]
Ke [Vn,2]

Ke

Giuseppe Persiano (UNISA) August 2020 12 / 36

The Leakage: what the Cloud Manager learns

H(Kh, L1) [V1,1]
Ke [V1,2]

Ke [V1,3]
Ke

H(Kh, L2) [V2,1]
Ke

.

H(Kh, Ln) [Vn,1]
Ke [Vn,2]

Ke

N, number of ciphertexts

Giuseppe Persiano (UNISA) August 2020 12 / 36

The Leakage: what the Cloud Manager learns

Li1 , Li2 , . . . , Liq

N, number of ciphertexts

H(Kh, Li1), . . . ,H(Kh, Liq)

Giuseppe Persiano (UNISA) August 2020 12 / 36

The Leakage: what the Cloud Manager learns

Li1 , Li2 , . . . , Liq

H(Kh, Li1), . . . ,H(Kh, Liq)

N, number of ciphertexts

Rep, repetition pattern

Giuseppe Persiano (UNISA) August 2020 12 / 36

The Leakage: what the Cloud Manager learns

Li1 , Li2 , . . . , Liq

N, number of ciphertexts

Rep, repetition pattern

[Vij ,1]
Kh
, . . . , [Vij ,lj]Kh

Giuseppe Persiano (UNISA) August 2020 12 / 36

The Leakage: what the Cloud Manager learns

Li1 , Li2 , . . . , Liq

N, number of ciphertexts

Rep, repetition pattern

[Vij ,1]
Kh
, . . . , [Vij ,lj]Kh

Giuseppe Persiano (UNISA) August 2020 12 / 36

The Leakage: what the Cloud Manager learns

Li1 , Li2 , . . . , Liq

[Vij ,1]
Kh
, . . . , [Vij ,lj]Kh

N, number of ciphertexts

Rep, repetition pattern

lj , volume of the j-th reply

Giuseppe Persiano (UNISA) August 2020 12 / 36

The Leakage: what the Cloud Manager learns

Li1 , Li2 , . . . , Liq

N, number of ciphertexts

Rep, repetition pattern

lj , volume of the j-th reply

Giuseppe Persiano (UNISA) August 2020 12 / 36

Padding to maximum length

H(Kh, L1) [V1,1]
Ke [V1,2]

Ke [V1,3]
Ke

H(Kh, L2) [V2,1]
Ke [0]

Ke [0]
Ke

.

H(Kh, Ln) [Vn,1]
Ke [Vn,2]

Ke [0]
Ke

Giuseppe Persiano (UNISA) August 2020 13 / 36

Padding to maximum length

H(Kh, L1) [V1,1]
Ke [V1,2]

Ke [V1,3]
Ke

H(Kh, L2) [V2,1]
Ke [0]

Ke [0]
Ke

.

H(Kh, Ln) [Vn,1]
Ke [Vn,2]

Ke [0]
Ke

Giuseppe Persiano (UNISA) August 2020 13 / 36

Padding to maximum length

H(Kh, L1) [V1,1]
Ke [V1,2]

Ke [V1,3]
Ke

H(Kh, L2) [V2,1]
Ke [0]

Ke [0]
Ke

.

H(Kh, Ln) [Vn,1]
Ke [Vn,2]

Ke [0]
Ke

n

`max

Rep

Leakage

Giuseppe Persiano (UNISA) August 2020 13 / 36

The Simulator

I = (Q,Data)

Giuseppe Persiano (UNISA) August 2020 14 / 36

The Simulator

I = (Q,Data)

Li1 , . . . , Liq

Giuseppe Persiano (UNISA) August 2020 14 / 36

The Simulator

I = (Q,Data)

(L1, (V1,1, . . . ,V1,l1), . . . , (Ln, (Vn,1, . . . ,Vn,ln)))

Giuseppe Persiano (UNISA) August 2020 14 / 36

The Simulator

I = (Q,Data)

Li1 , . . . , Liq

Rep = (1, 2, 1, 2, 5, 6, 1, 8, 6, . . . ,) H(Kh, Li1), . . . ,H(Kh, Liq))

Giuseppe Persiano (UNISA) August 2020 14 / 36

The Simulator

I = (Q,Data)

(L1, (V1,1, . . . ,V1,l1), . . . , (Ln, (Vn,1, . . . ,Vn,ln)))

Rep = (1, 2, 1, 2, 5, 6, 1, 8, 6, . . . ,) H(Kh, Li1), . . . ,H(Kh, Liq))

n, `max H(Kh, Li), ([Vi ,1]K e , . . . , [Vi ,`max]]K e)

Giuseppe Persiano (UNISA) August 2020 14 / 36

The Simulator

I = (Q,Data)

Rep = (1, 2, 1, 2, 5, 6, 1, 8, 6, . . . ,) H(Kh, Li1), . . . ,H(Kh, Liq))

n, `max H(Kh, Li), ([Vi ,1]K e , . . . , [Vi ,`max]]K e)Leakage

View

Giuseppe Persiano (UNISA) August 2020 14 / 36

The Simulator

I = (Q,Data)

Rep = (1, 2, 1, 2, 5, 6, 1, 8, 6, . . . ,) H(Kh, Li1), . . . ,H(Kh, Liq))

n, `max H(Kh, Li), ([Vi ,1]K e , . . . , [Vi ,`max]]K e)Leakage

View

Simulated View

H(Kh, Li), ([Vi ,1]K e , . . . , [Vi ,Li]K e)Ri , ([0]K e , . . . , [0]K e)

H(Kh, Li), ([Vi ,1]K e , . . . , [Vi ,Li]K e)Ri1 , . . . ,Riq

Giuseppe Persiano (UNISA) August 2020 14 / 36

The Simulator

I = (Q,Data)

Rep = (1, 2, 1, 2, 5, 6, 1, 8, 6, . . . ,) H(Kh, Li1), . . . ,H(Kh, Liq))

n, `max H(Kh, Li), ([Vi ,1]K e , . . . , [Vi ,`max]]K e)Leakage

View

Simulated View

H(Kh, Li), ([Vi ,1]K e , . . . , [Vi ,Li]K e)Ri , ([0]K e , . . . , [0]K e)

H(Kh, Li), ([Vi ,1]K e , . . . , [Vi ,Li]K e)Ri1 , . . . ,Riq

Indistinguishable

Giuseppe Persiano (UNISA) August 2020 14 / 36

It seems we are done

Implementation of Encrypted Multi-Map

1 That leaks
I size of the multi-map
I query repetition pattern

2 it is volume hiding

3 security under existence of one-way functions

Query time is Θ(`max) Very good!!!

Storage is Θ(n · `max) Very bad!!!

Giuseppe Persiano (UNISA) August 2020 15 / 36

It seems we are done

Implementation of Encrypted Multi-Map

1 That leaks
I size of the multi-map
I query repetition pattern

2 it is volume hiding

3 security under existence of one-way functions

Query time is Θ(`max) Very good!!!

Storage is Θ(n · `max) Very bad!!!

Giuseppe Persiano (UNISA) August 2020 15 / 36

It seems we are done

Implementation of Encrypted Multi-Map

1 That leaks
I size of the multi-map
I query repetition pattern

2 it is volume hiding

3 security under existence of one-way functions

Query time is Θ(`max) Very good!!!

Storage is Θ(n · `max)

Very bad!!!

Giuseppe Persiano (UNISA) August 2020 15 / 36

It seems we are done

Implementation of Encrypted Multi-Map

1 That leaks
I size of the multi-map
I query repetition pattern

2 it is volume hiding

3 security under existence of one-way functions

Query time is Θ(`max) Very good!!!

Storage is Θ(n · `max) Very bad!!!

Giuseppe Persiano (UNISA) August 2020 15 / 36

Densest Subgraph Transform

[Kamara-Moataz ’19]

DST
1 We have n bins

2 For each key Li assign the `max elements to (pseudo)-randomly
chosen bins

3 Pad all bins to maximum size Θ(log n)

4 To retrieve the values for label Li retrieve the L bins

Query time: Θ(L · log n)

Giuseppe Persiano (UNISA) August 2020 16 / 36

Concentrated Multi-Maps [K-M ’19]

(µ, τ)-Multi Maps has a set of µ keys that share τ values

Storage is saved by not repeating shared values

If values are distributed according to Zipf’s law, then except with
negligible probability storage is Θ(n)

Security based on hardness of planted densest subgraph

Giuseppe Persiano (UNISA) August 2020 17 / 36

Concentrated Multi-Maps [K-M ’19]

(µ, τ)-Multi Maps has a set of µ keys that share τ values

Storage is saved by not repeating shared values

If values are distributed according to Zipf’s law, then except with
negligible probability storage is Θ(n)

Security based on hardness of planted densest subgraph

Giuseppe Persiano (UNISA) August 2020 17 / 36

Concentrated Multi-Maps [K-M ’19]

(µ, τ)-Multi Maps has a set of µ keys that share τ values

Storage is saved by not repeating shared values

If values are distributed according to Zipf’s law, then except with
negligible probability storage is Θ(n)

Security based on hardness of planted densest subgraph

Giuseppe Persiano (UNISA) August 2020 17 / 36

Concentrated Multi-Maps [K-M ’19]

(µ, τ)-Multi Maps has a set of µ keys that share τ values

Storage is saved by not repeating shared values

If values are distributed according to Zipf’s law, then except with
negligible probability storage is Θ(n)

Security based on hardness of planted densest subgraph

Giuseppe Persiano (UNISA) August 2020 17 / 36

Still unhappy...

Desiderata
1 Θ(n) server storage in the worst case

2 Θ(`max) communication in the worst case

3 Standard complexity assumptions

Giuseppe Persiano (UNISA) August 2020 18 / 36

Blueprint for Volume Hiding Multi-Maps

Dream Data Structure

for each label L and integer j ,
there exists a set Mem(L, j) of constant number of memory locations
where j-th value of Vals(L) can be found;

the location in Mem(L, j) are pseudorandom

given N items, almost all can be stored using Θ(N) memory

Giuseppe Persiano (UNISA) August 2020 19 / 36

Blueprint for Volume Hiding Multi-Maps

Dream Data Structure

for each label L and integer j ,
there exists a set Mem(L, j) of constant number of memory locations
where j-th value of Vals(L) can be found;

the location in Mem(L, j) are pseudorandom

given N items, almost all can be stored using Θ(N) memory

Giuseppe Persiano (UNISA) August 2020 19 / 36

Blueprint for Volume Hiding Multi-Maps

Dream Data Structure

for each label L and integer j ,
there exists a set Mem(L, j) of constant number of memory locations
where j-th value of Vals(L) can be found;

the location in Mem(L, j) are pseudorandom

given N items, almost all can be stored using Θ(N) memory

Giuseppe Persiano (UNISA) August 2020 19 / 36

Encrypted Multi-Maps in Dreamland

1 Init for Data = ((L1,Vals(L1)), . . . , (Ln,Vals(Ln)))

I randomly select encryption key K e

I for i = 1, . . . , n
for j = 1, . . . , `i

store [Li ,Vi,j]K e in one of the locations of Mem(Li , j)
I keep the few that did not fit in local stash

2 Retrieve values for label L

I for j = 1, . . . , `max:

F ask for all memory cells in Mem(L, j),
F decrypt all ciphertexts received
F keep the ones (L, ?)
F look for the missing ones in the stash

Server memory: Θ(N), N = `1 + . . . , `n
Query bandwidth: Θ(`max)
Client memory: few values

Giuseppe Persiano (UNISA) August 2020 20 / 36

Encrypted Multi-Maps in Dreamland

1 Init for Data = ((L1,Vals(L1)), . . . , (Ln,Vals(Ln)))

I randomly select encryption key K e

I for i = 1, . . . , n
for j = 1, . . . , `i

store [Li ,Vi,j]K e in one of the locations of Mem(Li , j)
I keep the few that did not fit in local stash

2 Retrieve values for label L

I for j = 1, . . . , `max:

F ask for all memory cells in Mem(L, j),
F decrypt all ciphertexts received
F keep the ones (L, ?)
F look for the missing ones in the stash

Server memory: Θ(N), N = `1 + . . . , `n
Query bandwidth: Θ(`max)
Client memory: few values

Giuseppe Persiano (UNISA) August 2020 20 / 36

Encrypted Multi-Maps in Dreamland

1 Init for Data = ((L1,Vals(L1)), . . . , (Ln,Vals(Ln)))

I randomly select encryption key K e

I for i = 1, . . . , n
for j = 1, . . . , `i

store [Li ,Vi,j]K e in one of the locations of Mem(Li , j)

I keep the few that did not fit in local stash

2 Retrieve values for label L

I for j = 1, . . . , `max:

F ask for all memory cells in Mem(L, j),
F decrypt all ciphertexts received
F keep the ones (L, ?)
F look for the missing ones in the stash

Server memory: Θ(N), N = `1 + . . . , `n
Query bandwidth: Θ(`max)
Client memory: few values

Giuseppe Persiano (UNISA) August 2020 20 / 36

Encrypted Multi-Maps in Dreamland

1 Init for Data = ((L1,Vals(L1)), . . . , (Ln,Vals(Ln)))

I randomly select encryption key K e

I for i = 1, . . . , n
for j = 1, . . . , `i

store [Li ,Vi,j]K e in one of the locations of Mem(Li , j)
I keep the few that did not fit in local stash

2 Retrieve values for label L

I for j = 1, . . . , `max:

F ask for all memory cells in Mem(L, j),
F decrypt all ciphertexts received
F keep the ones (L, ?)
F look for the missing ones in the stash

Server memory: Θ(N), N = `1 + . . . , `n
Query bandwidth: Θ(`max)
Client memory: few values

Giuseppe Persiano (UNISA) August 2020 20 / 36

Encrypted Multi-Maps in Dreamland

1 Init for Data = ((L1,Vals(L1)), . . . , (Ln,Vals(Ln)))

I randomly select encryption key K e

I for i = 1, . . . , n
for j = 1, . . . , `i

store [Li ,Vi,j]K e in one of the locations of Mem(Li , j)
I keep the few that did not fit in local stash

2 Retrieve values for label L

I for j = 1, . . . , `max:

F ask for all memory cells in Mem(L, j),
F decrypt all ciphertexts received
F keep the ones (L, ?)
F look for the missing ones in the stash

Server memory: Θ(N), N = `1 + . . . , `n
Query bandwidth: Θ(`max)
Client memory: few values

Giuseppe Persiano (UNISA) August 2020 20 / 36

Encrypted Multi-Maps in Dreamland

1 Init for Data = ((L1,Vals(L1)), . . . , (Ln,Vals(Ln)))

I randomly select encryption key K e

I for i = 1, . . . , n
for j = 1, . . . , `i

store [Li ,Vi,j]K e in one of the locations of Mem(Li , j)
I keep the few that did not fit in local stash

2 Retrieve values for label L

I for j = 1, . . . , `max:

F ask for all memory cells in Mem(L, j),
F decrypt all ciphertexts received
F keep the ones (L, ?)
F look for the missing ones in the stash

Server memory: Θ(N), N = `1 + . . . , `n
Query bandwidth: Θ(`max)
Client memory: few values

Giuseppe Persiano (UNISA) August 2020 20 / 36

Encrypted Multi-Maps in Dreamland

1 Init for Data = ((L1,Vals(L1)), . . . , (Ln,Vals(Ln)))

I randomly select encryption key K e

I for i = 1, . . . , n
for j = 1, . . . , `i

store [Li ,Vi,j]K e in one of the locations of Mem(Li , j)
I keep the few that did not fit in local stash

2 Retrieve values for label L

I for j = 1, . . . , `max:

F ask for all memory cells in Mem(L, j),

F decrypt all ciphertexts received
F keep the ones (L, ?)
F look for the missing ones in the stash

Server memory: Θ(N), N = `1 + . . . , `n
Query bandwidth: Θ(`max)
Client memory: few values

Giuseppe Persiano (UNISA) August 2020 20 / 36

Encrypted Multi-Maps in Dreamland

1 Init for Data = ((L1,Vals(L1)), . . . , (Ln,Vals(Ln)))

I randomly select encryption key K e

I for i = 1, . . . , n
for j = 1, . . . , `i

store [Li ,Vi,j]K e in one of the locations of Mem(Li , j)
I keep the few that did not fit in local stash

2 Retrieve values for label L

I for j = 1, . . . , `max:

F ask for all memory cells in Mem(L, j),
F decrypt all ciphertexts received

F keep the ones (L, ?)
F look for the missing ones in the stash

Server memory: Θ(N), N = `1 + . . . , `n
Query bandwidth: Θ(`max)
Client memory: few values

Giuseppe Persiano (UNISA) August 2020 20 / 36

Encrypted Multi-Maps in Dreamland

1 Init for Data = ((L1,Vals(L1)), . . . , (Ln,Vals(Ln)))

I randomly select encryption key K e

I for i = 1, . . . , n
for j = 1, . . . , `i

store [Li ,Vi,j]K e in one of the locations of Mem(Li , j)
I keep the few that did not fit in local stash

2 Retrieve values for label L

I for j = 1, . . . , `max:

F ask for all memory cells in Mem(L, j),
F decrypt all ciphertexts received
F keep the ones (L, ?)

F look for the missing ones in the stash

Server memory: Θ(N), N = `1 + . . . , `n
Query bandwidth: Θ(`max)
Client memory: few values

Giuseppe Persiano (UNISA) August 2020 20 / 36

Encrypted Multi-Maps in Dreamland

1 Init for Data = ((L1,Vals(L1)), . . . , (Ln,Vals(Ln)))

I randomly select encryption key K e

I for i = 1, . . . , n
for j = 1, . . . , `i

store [Li ,Vi,j]K e in one of the locations of Mem(Li , j)
I keep the few that did not fit in local stash

2 Retrieve values for label L

I for j = 1, . . . , `max:

F ask for all memory cells in Mem(L, j),
F decrypt all ciphertexts received
F keep the ones (L, ?)
F look for the missing ones in the stash

Server memory: Θ(N), N = `1 + . . . , `n
Query bandwidth: Θ(`max)
Client memory: few values

Giuseppe Persiano (UNISA) August 2020 20 / 36

Encrypted Multi-Maps in Dreamland

1 Init for Data = ((L1,Vals(L1)), . . . , (Ln,Vals(Ln)))

I randomly select encryption key K e

I for i = 1, . . . , n
for j = 1, . . . , `i

store [Li ,Vi,j]K e in one of the locations of Mem(Li , j)
I keep the few that did not fit in local stash

2 Retrieve values for label L

I for j = 1, . . . , `max:

F ask for all memory cells in Mem(L, j),
F decrypt all ciphertexts received
F keep the ones (L, ?)
F look for the missing ones in the stash

Server memory: Θ(N), N = `1 + . . . , `n
Query bandwidth: Θ(`max)
Client memory: few values

Giuseppe Persiano (UNISA) August 2020 20 / 36

Encrypted Multi-Maps in Dreamland

1 Init for Data = ((L1,Vals(L1)), . . . , (Ln,Vals(Ln)))

I randomly select encryption key K e

I for i = 1, . . . , n
for j = 1, . . . , `i

store [Li ,Vi,j]K e in one of the locations of Mem(Li , j)
I keep the few that did not fit in local stash

2 Retrieve values for label L

I for j = 1, . . . , `max:

F ask for all memory cells in Mem(L, j),
F decrypt all ciphertexts received
F keep the ones (L, ?)
F look for the missing ones in the stash

Server memory: Θ(N), N = `1 + . . . , `n

Query bandwidth: Θ(`max)
Client memory: few values

Giuseppe Persiano (UNISA) August 2020 20 / 36

Encrypted Multi-Maps in Dreamland

1 Init for Data = ((L1,Vals(L1)), . . . , (Ln,Vals(Ln)))

I randomly select encryption key K e

I for i = 1, . . . , n
for j = 1, . . . , `i

store [Li ,Vi,j]K e in one of the locations of Mem(Li , j)
I keep the few that did not fit in local stash

2 Retrieve values for label L

I for j = 1, . . . , `max:

F ask for all memory cells in Mem(L, j),
F decrypt all ciphertexts received
F keep the ones (L, ?)
F look for the missing ones in the stash

Server memory: Θ(N), N = `1 + . . . , `n
Query bandwidth: Θ(`max)

Client memory: few values

Giuseppe Persiano (UNISA) August 2020 20 / 36

Encrypted Multi-Maps in Dreamland

1 Init for Data = ((L1,Vals(L1)), . . . , (Ln,Vals(Ln)))

I randomly select encryption key K e

I for i = 1, . . . , n
for j = 1, . . . , `i

store [Li ,Vi,j]K e in one of the locations of Mem(Li , j)
I keep the few that did not fit in local stash

2 Retrieve values for label L

I for j = 1, . . . , `max:

F ask for all memory cells in Mem(L, j),
F decrypt all ciphertexts received
F keep the ones (L, ?)
F look for the missing ones in the stash

Server memory: Θ(N), N = `1 + . . . , `n
Query bandwidth: Θ(`max)
Client memory: few values

Giuseppe Persiano (UNISA) August 2020 20 / 36

Enter Cuckoo Hashing

Giuseppe Persiano (UNISA) August 2020 21 / 36

The Cuckoo Graph for n items

T1 1

2

3

. . .

. . .

. . .

. . .

m − 1

m

1

2

3

. . .

. . .

. . .

. . .

m − 1

m

m = (1 + ε) · n

T2

Giuseppe Persiano (UNISA) August 2020 22 / 36

The Cuckoo Graph for n items

T1 1

2

3

. . .

. . .

. . .

. . .

m − 1

m

1

2

3

. . .

. . .

. . .

. . .

m − 1

m

m = (1 + ε) · n

T2

F (K1, x1)

F (K2, x1)x1

Giuseppe Persiano (UNISA) August 2020 22 / 36

The Cuckoo Graph for n items

T1 1

2

3

. . .

. . .

. . .

. . .

m − 1

m

1

2

3

. . .

. . .

. . .

. . .

m − 1

m

m = (1 + ε) · n

T2

F (K1, x1)

F (K2, x1)x1

x2

x3

x4

x5

x6

x7

Giuseppe Persiano (UNISA) August 2020 22 / 36

Cuckoo Graph

take each component of the cuckoo graph

I edges correspond to items
I vertices correspond to memory slots

if it is a tree or if it has only one cycle

I number of edges ≤ number of vertices
I there is enough space to store each item in one of the two endpoints

if it is has more than only one cycle

I remove edges until we fall in the previous case
I removed items are stored in the stash

Theorem (Kirsch-Mitzenmacher-Wieder ’09)

The probability that s items are stored in the stash is O(n−s).

Giuseppe Persiano (UNISA) August 2020 23 / 36

Cuckoo Graph

take each component of the cuckoo graph
I edges correspond to items

I vertices correspond to memory slots

if it is a tree or if it has only one cycle

I number of edges ≤ number of vertices
I there is enough space to store each item in one of the two endpoints

if it is has more than only one cycle

I remove edges until we fall in the previous case
I removed items are stored in the stash

Theorem (Kirsch-Mitzenmacher-Wieder ’09)

The probability that s items are stored in the stash is O(n−s).

Giuseppe Persiano (UNISA) August 2020 23 / 36

Cuckoo Graph

take each component of the cuckoo graph
I edges correspond to items
I vertices correspond to memory slots

if it is a tree or if it has only one cycle

I number of edges ≤ number of vertices
I there is enough space to store each item in one of the two endpoints

if it is has more than only one cycle

I remove edges until we fall in the previous case
I removed items are stored in the stash

Theorem (Kirsch-Mitzenmacher-Wieder ’09)

The probability that s items are stored in the stash is O(n−s).

Giuseppe Persiano (UNISA) August 2020 23 / 36

Cuckoo Graph

take each component of the cuckoo graph
I edges correspond to items
I vertices correspond to memory slots

if it is a tree or if it has only one cycle

I number of edges ≤ number of vertices
I there is enough space to store each item in one of the two endpoints

if it is has more than only one cycle

I remove edges until we fall in the previous case
I removed items are stored in the stash

Theorem (Kirsch-Mitzenmacher-Wieder ’09)

The probability that s items are stored in the stash is O(n−s).

Giuseppe Persiano (UNISA) August 2020 23 / 36

Cuckoo Graph

take each component of the cuckoo graph
I edges correspond to items
I vertices correspond to memory slots

if it is a tree or if it has only one cycle
I number of edges ≤ number of vertices

I there is enough space to store each item in one of the two endpoints

if it is has more than only one cycle

I remove edges until we fall in the previous case
I removed items are stored in the stash

Theorem (Kirsch-Mitzenmacher-Wieder ’09)

The probability that s items are stored in the stash is O(n−s).

Giuseppe Persiano (UNISA) August 2020 23 / 36

Cuckoo Graph

take each component of the cuckoo graph
I edges correspond to items
I vertices correspond to memory slots

if it is a tree or if it has only one cycle
I number of edges ≤ number of vertices
I there is enough space to store each item in one of the two endpoints

if it is has more than only one cycle

I remove edges until we fall in the previous case
I removed items are stored in the stash

Theorem (Kirsch-Mitzenmacher-Wieder ’09)

The probability that s items are stored in the stash is O(n−s).

Giuseppe Persiano (UNISA) August 2020 23 / 36

Cuckoo Graph

take each component of the cuckoo graph
I edges correspond to items
I vertices correspond to memory slots

if it is a tree or if it has only one cycle
I number of edges ≤ number of vertices
I there is enough space to store each item in one of the two endpoints

if it is has more than only one cycle

I remove edges until we fall in the previous case
I removed items are stored in the stash

Theorem (Kirsch-Mitzenmacher-Wieder ’09)

The probability that s items are stored in the stash is O(n−s).

Giuseppe Persiano (UNISA) August 2020 23 / 36

Cuckoo Graph

take each component of the cuckoo graph
I edges correspond to items
I vertices correspond to memory slots

if it is a tree or if it has only one cycle
I number of edges ≤ number of vertices
I there is enough space to store each item in one of the two endpoints

if it is has more than only one cycle
I remove edges until we fall in the previous case

I removed items are stored in the stash

Theorem (Kirsch-Mitzenmacher-Wieder ’09)

The probability that s items are stored in the stash is O(n−s).

Giuseppe Persiano (UNISA) August 2020 23 / 36

Cuckoo Graph

take each component of the cuckoo graph
I edges correspond to items
I vertices correspond to memory slots

if it is a tree or if it has only one cycle
I number of edges ≤ number of vertices
I there is enough space to store each item in one of the two endpoints

if it is has more than only one cycle
I remove edges until we fall in the previous case
I removed items are stored in the stash

Theorem (Kirsch-Mitzenmacher-Wieder ’09)

The probability that s items are stored in the stash is O(n−s).

Giuseppe Persiano (UNISA) August 2020 23 / 36

Cuckoo Graph

take each component of the cuckoo graph
I edges correspond to items
I vertices correspond to memory slots

if it is a tree or if it has only one cycle
I number of edges ≤ number of vertices
I there is enough space to store each item in one of the two endpoints

if it is has more than only one cycle
I remove edges until we fall in the previous case
I removed items are stored in the stash

Theorem (Kirsch-Mitzenmacher-Wieder ’09)

The probability that s items are stored in the stash is O(n−s).

Giuseppe Persiano (UNISA) August 2020 23 / 36

Cuckoo Graph

take each component of the cuckoo graph
I edges correspond to items
I vertices correspond to memory slots

if it is a tree or if it has only one cycle
I number of edges ≤ number of vertices
I there is enough space to store each item in one of the two endpoints

if it is has more than only one cycle
I remove edges until we fall in the previous case
I removed items are stored in the stash

Theorem (Kirsch-Mitzenmacher-Wieder ’09)

The probability that s items are stored in the stash is O(n−s).

Giuseppe Persiano (UNISA) August 2020 23 / 36

Constructing the Cuckoo Hash Table

The construction of the components of the cuckoo graph and the
deletion of the extra edges can be performed with a sequence of
MapReduce operations

MapReduce can be performed obliviously

In practice (and in our experiments):

I try to insert x to X1 or X2

I if one is empty, we are done
I otherwise evict y from X1

I try to insert y to Y2

I if not successful after M steps, add x to stash

If M = Ω(log n) then resulting stash is very small and average
insertion time stays constant.

Giuseppe Persiano (UNISA) August 2020 24 / 36

Constructing the Cuckoo Hash Table

The construction of the components of the cuckoo graph and the
deletion of the extra edges can be performed with a sequence of
MapReduce operations

MapReduce can be performed obliviously

In practice (and in our experiments):

I try to insert x to X1 or X2

I if one is empty, we are done
I otherwise evict y from X1

I try to insert y to Y2

I if not successful after M steps, add x to stash

If M = Ω(log n) then resulting stash is very small and average
insertion time stays constant.

Giuseppe Persiano (UNISA) August 2020 24 / 36

Constructing the Cuckoo Hash Table

The construction of the components of the cuckoo graph and the
deletion of the extra edges can be performed with a sequence of
MapReduce operations

MapReduce can be performed obliviously

In practice (and in our experiments):

I try to insert x to X1 or X2

I if one is empty, we are done
I otherwise evict y from X1

I try to insert y to Y2

I if not successful after M steps, add x to stash

If M = Ω(log n) then resulting stash is very small and average
insertion time stays constant.

Giuseppe Persiano (UNISA) August 2020 24 / 36

Constructing the Cuckoo Hash Table

The construction of the components of the cuckoo graph and the
deletion of the extra edges can be performed with a sequence of
MapReduce operations

MapReduce can be performed obliviously

In practice (and in our experiments):
I try to insert x to X1 or X2

I if one is empty, we are done
I otherwise evict y from X1

I try to insert y to Y2

I if not successful after M steps, add x to stash

If M = Ω(log n) then resulting stash is very small and average
insertion time stays constant.

Giuseppe Persiano (UNISA) August 2020 24 / 36

Constructing the Cuckoo Hash Table

The construction of the components of the cuckoo graph and the
deletion of the extra edges can be performed with a sequence of
MapReduce operations

MapReduce can be performed obliviously

In practice (and in our experiments):
I try to insert x to X1 or X2

I if one is empty, we are done

I otherwise evict y from X1

I try to insert y to Y2

I if not successful after M steps, add x to stash

If M = Ω(log n) then resulting stash is very small and average
insertion time stays constant.

Giuseppe Persiano (UNISA) August 2020 24 / 36

Constructing the Cuckoo Hash Table

The construction of the components of the cuckoo graph and the
deletion of the extra edges can be performed with a sequence of
MapReduce operations

MapReduce can be performed obliviously

In practice (and in our experiments):
I try to insert x to X1 or X2

I if one is empty, we are done
I otherwise evict y from X1

I try to insert y to Y2

I if not successful after M steps, add x to stash

If M = Ω(log n) then resulting stash is very small and average
insertion time stays constant.

Giuseppe Persiano (UNISA) August 2020 24 / 36

Constructing the Cuckoo Hash Table

The construction of the components of the cuckoo graph and the
deletion of the extra edges can be performed with a sequence of
MapReduce operations

MapReduce can be performed obliviously

In practice (and in our experiments):
I try to insert x to X1 or X2

I if one is empty, we are done
I otherwise evict y from X1

I try to insert y to Y2

I if not successful after M steps, add x to stash

If M = Ω(log n) then resulting stash is very small and average
insertion time stays constant.

Giuseppe Persiano (UNISA) August 2020 24 / 36

Constructing the Cuckoo Hash Table

The construction of the components of the cuckoo graph and the
deletion of the extra edges can be performed with a sequence of
MapReduce operations

MapReduce can be performed obliviously

In practice (and in our experiments):
I try to insert x to X1 or X2

I if one is empty, we are done
I otherwise evict y from X1

I try to insert y to Y2

I if not successful after M steps, add x to stash

If M = Ω(log n) then resulting stash is very small and average
insertion time stays constant.

Giuseppe Persiano (UNISA) August 2020 24 / 36

Constructing the Cuckoo Hash Table

The construction of the components of the cuckoo graph and the
deletion of the extra edges can be performed with a sequence of
MapReduce operations

MapReduce can be performed obliviously

In practice (and in our experiments):
I try to insert x to X1 or X2

I if one is empty, we are done
I otherwise evict y from X1

I try to insert y to Y2

I if not successful after M steps, add x to stash

If M = Ω(log n) then resulting stash is very small and average
insertion time stays constant.

Giuseppe Persiano (UNISA) August 2020 24 / 36

Blueprint for Volume Hiding Multi-Maps – Revisited

Cuckoo Hashing

for each label L and integer j ,
there exists a set Mem(L, j) of constant number of memory locations
where j-th value of Vals(L) can be found;

the location in Mem(L, j) are pseudorandom

given N items, almost all can be stored using Θ(N) memory

Giuseppe Persiano (UNISA) August 2020 25 / 36

Blueprint for Volume Hiding Multi-Maps – Revisited

Cuckoo Hashing

for each label L and integer j ,
there exists a set Mem(L, j) of two memory locations where j-th
value of Vals(L) can be found;

the location in Mem(L, j) are pseudorandom

given N items, almost all can be stored using Θ(N) memory

Giuseppe Persiano (UNISA) August 2020 25 / 36

Blueprint for Volume Hiding Multi-Maps – Revisited

Cuckoo Hashing

for each label L and integer j ,
there exists a set Mem(L, j) of two memory locations where j-th
value of Vals(L) can be found;

the location in Mem(L, j) are pseudorandom

given N items, almost all can be stored using Θ(N) memory

Giuseppe Persiano (UNISA) August 2020 25 / 36

Encrypted Multi-Maps using Cuckoo Hashing

Algorithm Init

Data = ((L1,Vals(L1)), . . . , (Ln,Vals(Ln)))

1 randomly select seeds K1,K2 for PRF F

2 randomly select encryption key K e

3 for i = 1, . . . , n
I randomly select permutation Πi over [1, . . . , `max]
I for j = 1 to li

F Add edge labeled [Li ,Vi,j]Ke between vertices F (K1, (L,Πi (j))) and
F (K2, (L,Πi (j)))

4 Construct T1 and T2 (stored remotely) and stash (stored locally)

Giuseppe Persiano (UNISA) August 2020 26 / 36

Encrypted Multi-Maps using Cuckoo Hashing

Algorithm Get

Retrieve values for label L

for j = 1, . . . , `max:

I ask for slot F (K1, (L, j)) in table T1 and slot F (K2, (L, j)) in table T2

decrypt all ciphertexts received

keep the ones (L, ?)

look for the missing ones in the stash

Giuseppe Persiano (UNISA) August 2020 27 / 36

Encrypted Multi-Maps using Cuckoo Hashing

1 Leakage
I N, total number of values
I L, maximum volume
I Rep, query repetition pattern

2 Storage
I Server: (2 + ε)N
I Client: practically constant

3 Communication
I Client to Server 2L indices
I Server to Client 2L ciphertexts

Security assuming One-Way Functions

Giuseppe Persiano (UNISA) August 2020 28 / 36

Encrypted Multi-Maps using Cuckoo Hashing

1 Leakage
I N, total number of values
I L, maximum volume
I Rep, query repetition pattern

2 Storage
I Server: (2 + ε)N
I Client: practically constant

3 Communication
I Client to Server 2 seeds (by using delegatable PRFs)
I Server to Client 2L ciphertexts

Security assuming One-Way Functions

Giuseppe Persiano (UNISA) August 2020 28 / 36

Always download maximum volume?

All previous schemes consider perfect volume-hiding privacy

This requires that all queries download ≥ `max entries

This very wasteful when there is a huge variation in the length of
tuples (e.g., Zipf’s law)

Question:
Can we obtain some meaningful privacy notion that allows for
downloading ≤ `max entries?

Giuseppe Persiano (UNISA) August 2020 29 / 36

Always download maximum volume?

All previous schemes consider perfect volume-hiding privacy

This requires that all queries download ≥ `max entries

This very wasteful when there is a huge variation in the length of
tuples (e.g., Zipf’s law)

Question:
Can we obtain some meaningful privacy notion that allows for
downloading ≤ `max entries?

Giuseppe Persiano (UNISA) August 2020 29 / 36

Always download maximum volume?

All previous schemes consider perfect volume-hiding privacy

This requires that all queries download ≥ `max entries

This very wasteful when there is a huge variation in the length of
tuples (e.g., Zipf’s law)

Question:
Can we obtain some meaningful privacy notion that allows for
downloading ≤ `max entries?

Giuseppe Persiano (UNISA) August 2020 29 / 36

Always download maximum volume?

All previous schemes consider perfect volume-hiding privacy

This requires that all queries download ≥ `max entries

This very wasteful when there is a huge variation in the length of
tuples (e.g., Zipf’s law)

Question:
Can we obtain some meaningful privacy notion that allows for
downloading ≤ `max entries?

Giuseppe Persiano (UNISA) August 2020 29 / 36

Always download maximum volume?

All previous schemes consider perfect volume-hiding privacy

This requires that all queries download ≥ `max entries

This very wasteful when there is a huge variation in the length of
tuples (e.g., Zipf’s law)

Question:
Can we obtain some meaningful privacy notion that allows for
downloading ≤ `max entries?

Giuseppe Persiano (UNISA) August 2020 29 / 36

(ε, δ)-Differentially Private Volume-Hiding Encrypted
Multi-Maps

Data1 and Data2 differ in the volume of one label Li

|l1i − l2i | = 1

then

Prob[View(Data1) ∈ S] ≤ eε · Prob[View(Data2) ∈ S] + δ

for all subsets S of views

Giuseppe Persiano (UNISA) August 2020 30 / 36

Cuckoo hashing with DP

To retrieve tuple for label L,

F (K1, L||1) F (K2, L||1)
F (K1, L||2) F (K2, L||2)
F (K1, L||3) F (K2, L||3)

.
F (K1, L||`max) F (K2, L||`max)
F (K1, L||`max + T + ZL) F (K2, L||`max + T + ZL)

Giuseppe Persiano (UNISA) August 2020 31 / 36

Cuckoo hashing with DP

To retrieve tuple for label L,

F (K1, L||1) F (K2, L||1)
F (K1, L||2) F (K2, L||2)
F (K1, L||3) F (K2, L||3)

.
F (K1, L||`max + ZL) F (K2, L||`max + ZL)
F (K1, L||`max + T + ZL) F (K2, L||`max + T + ZL)

ZL is the noise from Laplacian(O(1/ε)) dist.

Giuseppe Persiano (UNISA) August 2020 31 / 36

Cuckoo hashing with DP

To retrieve tuple for label L,

F (K1, L||1) F (K2, L||1)
F (K1, L||2) F (K2, L||2)
F (K1, L||3) F (K2, L||3)

.
F (K1, L||`max + ZL) F (K2, L||`max + ZL)
F (K1, L||`max + T + ZL) F (K2, L||`max + T + ZL)

ZL is the noise from Laplacian(O(1/ε)) dist.

ZL could be negative

Giuseppe Persiano (UNISA) August 2020 31 / 36

Cuckoo hashing with DP

To retrieve tuple for label L,

F (K1, L||1) F (K2, L||1)
F (K1, L||2) F (K2, L||2)
F (K1, L||3) F (K2, L||3)

.
F (K1, L||`max + T + ZL) F (K2, L||`max + T + ZL)
F (K1, L||`max + T + ZL) F (K2, L||`max + T + ZL)

ZL is the noise from Laplacian(O(1/ε)) dist.

ZL could be negative

Make sure T ≥ |ZL|

|ZL| > log n with negligible probability

Giuseppe Persiano (UNISA) August 2020 31 / 36

Cuckoo hashing with DP

Data is Sanitized

ZL is distributed according to LaplacianO(1/ε)

Sampled once and stored over the server

We need a dictionary to store it

No volume leakage

Giuseppe Persiano (UNISA) August 2020 32 / 36

Cuckoo hashing with DP

Data is Sanitized

ZL is distributed according to LaplacianO(1/ε)

Sampled once and stored over the server

We need a dictionary to store it

No volume leakage

Giuseppe Persiano (UNISA) August 2020 32 / 36

Cuckoo hashing with DP

Data is Sanitized

ZL is distributed according to LaplacianO(1/ε)

Sampled once and stored over the server

We need a dictionary to store it

No volume leakage

Giuseppe Persiano (UNISA) August 2020 32 / 36

Cuckoo hashing with DP

Data is Sanitized

ZL is distributed according to LaplacianO(1/ε)

Sampled once and stored over the server

We need a dictionary to store it

No volume leakage

Giuseppe Persiano (UNISA) August 2020 32 / 36

Experiments

Volume Hiding with dPRF vs DST

Cuckoo Hash with m = 1.3n
Give up insertion after 5 log n tries

Less Server Storage

I For N ≈ 4Million values
348MB vs 384MB

Query Overhead: 2 ciphertexts per value (64 bytes)

I 675 bytes for N ≈ 64000 values (10x improvement)
I 1008 bytes for N ≈ 4Million values (16x improvement)

Client Storage

I less than 4 KB

Giuseppe Persiano (UNISA) August 2020 33 / 36

Experiments

Volume Hiding with dPRF vs DST

Cuckoo Hash with m = 1.3n
Give up insertion after 5 log n tries

Less Server Storage

I For N ≈ 4Million values
348MB vs 384MB

Query Overhead: 2 ciphertexts per value (64 bytes)

I 675 bytes for N ≈ 64000 values (10x improvement)
I 1008 bytes for N ≈ 4Million values (16x improvement)

Client Storage

I less than 4 KB

Giuseppe Persiano (UNISA) August 2020 33 / 36

Experiments

Volume Hiding with dPRF vs DST

Cuckoo Hash with m = 1.3n
Give up insertion after 5 log n tries

Less Server Storage
I For N ≈ 4Million values

348MB vs 384MB

Query Overhead: 2 ciphertexts per value (64 bytes)

I 675 bytes for N ≈ 64000 values (10x improvement)
I 1008 bytes for N ≈ 4Million values (16x improvement)

Client Storage

I less than 4 KB

Giuseppe Persiano (UNISA) August 2020 33 / 36

Experiments

Volume Hiding with dPRF vs DST

Cuckoo Hash with m = 1.3n
Give up insertion after 5 log n tries

Less Server Storage
I For N ≈ 4Million values

348MB vs 384MB

Query Overhead: 2 ciphertexts per value (64 bytes)

I 675 bytes for N ≈ 64000 values (10x improvement)
I 1008 bytes for N ≈ 4Million values (16x improvement)

Client Storage

I less than 4 KB

Giuseppe Persiano (UNISA) August 2020 33 / 36

Experiments

Volume Hiding with dPRF vs DST

Cuckoo Hash with m = 1.3n
Give up insertion after 5 log n tries

Less Server Storage
I For N ≈ 4Million values

348MB vs 384MB

Query Overhead: 2 ciphertexts per value (64 bytes)
I 675 bytes for N ≈ 64000 values (10x improvement)

I 1008 bytes for N ≈ 4Million values (16x improvement)

Client Storage

I less than 4 KB

Giuseppe Persiano (UNISA) August 2020 33 / 36

Experiments

Volume Hiding with dPRF vs DST

Cuckoo Hash with m = 1.3n
Give up insertion after 5 log n tries

Less Server Storage
I For N ≈ 4Million values

348MB vs 384MB

Query Overhead: 2 ciphertexts per value (64 bytes)
I 675 bytes for N ≈ 64000 values (10x improvement)
I 1008 bytes for N ≈ 4Million values (16x improvement)

Client Storage

I less than 4 KB

Giuseppe Persiano (UNISA) August 2020 33 / 36

Experiments

Volume Hiding with dPRF vs DST

Cuckoo Hash with m = 1.3n
Give up insertion after 5 log n tries

Less Server Storage
I For N ≈ 4Million values

348MB vs 384MB

Query Overhead: 2 ciphertexts per value (64 bytes)
I 675 bytes for N ≈ 64000 values (10x improvement)
I 1008 bytes for N ≈ 4Million values (16x improvement)

Client Storage

I less than 4 KB

Giuseppe Persiano (UNISA) August 2020 33 / 36

Experiments

Volume Hiding with dPRF vs DST

Cuckoo Hash with m = 1.3n
Give up insertion after 5 log n tries

Less Server Storage
I For N ≈ 4Million values

348MB vs 384MB

Query Overhead: 2 ciphertexts per value (64 bytes)
I 675 bytes for N ≈ 64000 values (10x improvement)
I 1008 bytes for N ≈ 4Million values (16x improvement)

Client Storage
I less than 4 KB

Giuseppe Persiano (UNISA) August 2020 33 / 36

Differentially-Private Volume Hiding with dPRF vs DST

ε = 0.2

Lossy with probability 2−64

Number of values of a label follows Zipf’s distribution
Average length 8

To obtain 2−64, T = 5610,

I average download is 5618

Volume-Hiding forced to download max length ≈ 84000
15x improvement

Giuseppe Persiano (UNISA) August 2020 34 / 36

Differentially-Private Volume Hiding with dPRF vs DST

ε = 0.2

Lossy with probability 2−64

Number of values of a label follows Zipf’s distribution
Average length 8

To obtain 2−64, T = 5610,

I average download is 5618

Volume-Hiding forced to download max length ≈ 84000
15x improvement

Giuseppe Persiano (UNISA) August 2020 34 / 36

Differentially-Private Volume Hiding with dPRF vs DST

ε = 0.2

Lossy with probability 2−64

Number of values of a label follows Zipf’s distribution
Average length 8

To obtain 2−64, T = 5610,

I average download is 5618

Volume-Hiding forced to download max length ≈ 84000
15x improvement

Giuseppe Persiano (UNISA) August 2020 34 / 36

Differentially-Private Volume Hiding with dPRF vs DST

ε = 0.2

Lossy with probability 2−64

Number of values of a label follows Zipf’s distribution
Average length 8

To obtain 2−64, T = 5610,

I average download is 5618

Volume-Hiding forced to download max length ≈ 84000
15x improvement

Giuseppe Persiano (UNISA) August 2020 34 / 36

Differentially-Private Volume Hiding with dPRF vs DST

ε = 0.2

Lossy with probability 2−64

Number of values of a label follows Zipf’s distribution
Average length 8

To obtain 2−64, T = 5610,

I average download is 5618

Volume-Hiding forced to download max length ≈ 84000
15x improvement

Giuseppe Persiano (UNISA) August 2020 34 / 36

Differentially-Private Volume Hiding with dPRF vs DST

ε = 0.2

Lossy with probability 2−64

Number of values of a label follows Zipf’s distribution
Average length 8

To obtain 2−64, T = 5610,

I average download is 5618

Volume-Hiding forced to download max length ≈ 84000
15x improvement

Giuseppe Persiano (UNISA) August 2020 34 / 36

Experiments

Giuseppe Persiano (UNISA) August 2020 35 / 36

Thank You

ePrint: https://eprint.iacr.org/2019/1292

CCS ’19: https://doi.org/10.1145/3319535.3354213

Giuseppe Persiano (UNISA) August 2020 36 / 36

